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This article is an effort to generalize the corresponding parts in Kashiwara-
Schapira’s book Categories and Sheaves, in which they consider the case of
1-categories. Besides that, the main reference is Lurie’s Higher Topos The-
ory, abbreviated as HTT. We will always refer to the version on his personal
website.
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1 Calculus of Fractions
1.1 Localization by Right Fractions
To take localization of an ∞-category is to make some of its morphisms
invertible, in a free or universal way.

Definition 1.1.1. Let S be a class of morphisms in an ∞-category C. A
functor f : C→ C′ is S-invariant if it sends morphisms in S to equivalences.
We will write FunS(C,C

′) for the full subcategory of Fun(C,C′) comprised
of S-invariant functors. A localization of C at S is an S-invariant functor
q : C→ S−1 C such that it induces equivalence of categories for any C′:

q∗ : Fun(S−1 C,D′) ' FunS(C,C
′)

The localization of a small ∞-category C at any class S is always exist
since it is nothing but a homotopy pushout in Cat∞:

S C

|S| S−1 C

Here we regard S as a subcategory of C and S → |S| denotes the geometric
realization. This description leads to a useful property that, if we regard
S as morphisms of hC, we have canonical equivalence S−1(hC) ' h(S−1 C)
since taking homotopy categories commutes with small colimits. We will
not develop any general theory about localization but focus on a specific
case that is more tractable but still useful.

Given any S-invariant functor q : C → C′, we are able to construct a
functor qX : SX/ → C/q(X) for any X ∈ C that sends s : X → X ′ ∈ SX/ to
q(s)−1 : q(X ′)→ q(X) ∈ C/q(X). These functors can be exploited to identify
a special kind of localization functors.

Theorem 1.1.2. Assume that an S-invariant functor q : C → C′ between
small ∞-categories satisfies the following properties:

1. The functor q is essentially surjective;

2. For any object X ∈ C, the functor qX is cofinal.

Then q is a localization functor C→ S−1 C ' C′.

Proof. The theorem follows from two claims: (a) given any S-invariant func-
tor f : C → D, the left Kan extension f ′ of f along q exists and it holds
that f ′ ◦ q ' f ; (b) any functor f ′ : C′ → D is the left Kan extension of its
composition f ′ ◦q. Actually (b) can be deduced from (a) using the universal
property together with the essential surjectivity of q. Also by the essential
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surjectivity, to prove (a), we only need to show that, given any S-invariant
functor f : C → D, the colimit of C/q(X) → C → D exists and is naturally
equivalent to f(X). Since qX is cofinal, after composing with qX , we can
consider the corresponding diagram p : SX/ → D. By the definition of SX/

and the S-invariance of f , we see that p sends all morphisms to equivalences
and the contractibility of SX/ (since it has initial object idX) guarantees
that this diagram is equivalent to a constant digram with value f(X).

Given any functor f : C → C′ and X ∈ C′, the right fibration C/X → C

is classified by the presheaf:

MapC′(f(−), X) ' colimf(X′)→X∈C/X
MapC(−, X ′)

It follows that Theorem 1.1.2 implies the mapping spaces of S−1 C can be
represented by the colimits:

MapS−1 C(A,X) ' colimX→X′∈SX/
MapC(A,X

′)

More precisely, fixing A ∈ C, the co-presheaf MapC(A,−) over SX/ corre-
sponds to a left fibration:

SpanS(A,X)→ SX/

The∞-category SpanS(A,X) is the subcategory of Fun(Λ2
0,C) comprised of

objects A→ X ′ ← X such that X ′ → X ∈ S, which we call right fractions,
and morphisms of the following form:

A X ′ X

A X ′′ X

id

s′

id

s′′

Therefore the previous colimit formula has an equivalent formulation:

MapS−1 C(A,X) ' | SpanS(A,X)|

In particular, after taking π0, we deduce that any morphism in S−1 C can
be factorized as q(s)−1 ◦ q(r) such that s ∈ S and the corresponding right
fractions of different factorizations are connected by zig-zags of morphisms
in SpanS(A,X).

If we impose furthermore a filteredness condition, we will obtain a gen-
eralization of classical calculus of fractions for 1-categories.

Definition 1.1.3. Let S be a class of morphisms of C that contains all
equivalences and is closed under composition. If the following holds:

1. For any object X ∈ C, the ∞-category SX/ is filtered.
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2. There exists a functor q satisfies Theorem 1.1.2;

We say that S admits calculus of right fractions.

Remark 1.1.4. This definition captures the most important property of the
classical notion and allows to generalize the good results to ∞-categories,
in a relatively easy way. It seems that our notion, even in the case of 1-
categories, is a bit more general than the classical one. However, we will
show that they are equivalent in (cf. Theorem 1.4.6) in the end of this
chapter.

The last result in this section is a criterion to decide whether S admits
calculus of right fractions, which will be used later.

Theorem 1.1.5. Let S be a class of morphisms of C that contains all
equivalences, is closed under composition and for any X ∈ C, the∞-category
SX/ is filtered. Then S admits calculus of right fractions if and only if the
following presheaf is S-invariant for any X ∈ C:

lim−→X→X′∈SX/
MapC(−, X ′)

Or equivalently, it is an S-local object of ind -C.

Proof. We have to show that there exists a functor satisfying Theorem 1.1.2.
The diagram fX : SX/ → C, seen as an ind -object of C which we will denote
as LX ∈ ind -C, is S-local by assumption. Since idX is the initial object of
SX/, we have a morphism pX : X → LX. Actually pX is the S-localization
of X in ind -D. This is because pX is S-equivalence since pX is the filtered
colimit of morphisms in S.

By the universal property of S-localization, we obtain a functor L :
C → ind -C and a natural transformation j → L (j denotes the Yoneda
embedding). We will write C′

/LX and C/LX respectively for the comma fiber
of j and L over LX. Also by the universal property, we have equivalence
C′
/LX ' C/LX . By (.....!!!!!!!!), the canonical functor SX/ → C′

/LX ' C/LX is
cofinal, and the functor is equivalent to the qX mentioned in Theorem 1.1.2.
The functor we want is the restriction of L to its essential image.
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1.2 Compatibility with Finite Colimits and Zero Objects
Provided that S admits calculus of fractions, the localization procedure is
well compatible with finite colimits.

Theorem 1.2.1. Let S be a class of morphisms that admits calculus of right
fractions. The localization functor q : C→ S−1 C is right exact.

Proof. The functor qX : SX/ → C/q(X) is cofinal and SX/ is filtered, and
hence C/q(X) is filtered.

Theorem 1.2.2. Let S be a class of morphisms that admits calculus of right
fractions. The following holds:

1. If C admits initial objects, so is S−1 C;

2. If C admits finite coproducts, so is S−1 C;

3. If C admits pushouts, so is S−1 C;

4. If C admits finite colimits, so is S−1 C;

Moreover the localization functor preserves any finite colimits that exist.

Proof. The last claim, (1) and (2) follows immediately from the right exact-
ness and essential surjectivity of q : C→ S−1 C. The claim (4) is a corollary
of (1), (2) and (3). We are left to prove (3). The remark above implies that
any morphism q(A) → q(B) in S−1 C can be factorized as q(s)−1 ◦ q(r) for
some s ∈ S. Therefore given any diagram as the first row in the following
diagram, we can have an equivalence between diagrams:

q(X) q(A) q(X ′)

q(Y ) q(A) q(Y ′)

q(s)

f f ′

id q(s′)

q(r) q(r′)

The pushout of the second row exists since it is from C, and hence is the
first row.

One can use a similar argument to show the following.

Theorem 1.2.3. Let S ⊆ C be a class of morphisms that admits calculus
of right fractions. If C admits finite colimits, then for any right exact
S-invariant functor f : C → C′, the canonical functor given by universal
property f̃ : S−1 C→ C′ is also right exact.

Remark 1.2.4. All of the results in this section have κ-version for any
uncountable regular cardinal κ if we assume that SX/ is κ-filtered whatever
we take X ∈ C.
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In general, one should not hope that calculus of right fractions have
compatibility with limits, with one exception.

Theorem 1.2.5. Let S ⊆ C be a class of morphisms that admits calculus of
right fractions. If C admits zero objects, S−1 C admits zero objects and the
localization functor preserves them.

Proof. ...
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1.3 Localization of Subcategories
Let S be a class of morphisms of C that admits calculus of right fractions,
C0 ⊆ C a full subcategory and S0 denotes the class S ∩ C0.

Theorem 1.3.1. Suppose that for any object X ∈ C0 and morphism X →
X ′ ∈ S, there exists X ′ → X ′′ such that X ′′ ∈ C0 and the composition
X → X ′ → X ′′ is in S. Then S0 admits calculus of right fractions, and the
canonical functor S−1

0 C0 → S−1 C is fully faithful.

Proof. The assumption implies that for any X ∈ C0, (S0)X/ is filtered and
the inclusion (S0)X/ → SX/ is cofinal (cf. !!!!!!!!!!). Let q : C → S−1 C be
the localization functor. It follows that q|C0 seen as functor to its essential
image satisfies Theorem 1.1.2.
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1.4 Ore Condition
In this section, we give a generalization of Ore condition to ∞-categories.
The material here is merely for the purpose of integrity and will not be
used later. We begin with some notations. Let Dn denote the simplicial set
∆0 ? ∂∆n ? ∆0 , D+

n its simplicial subset ∅ ? ∂∆n ? ∆0 , D−
n its simplicial

subset ∆0 ? ∂∆n ? ∅ and En their intersection D+
n ∩D−

n ' ∅ ? ∂∆n ? ∅. Also
we denote two special 1-simplexes ∆0 ? {0} ? ∅ and ∅ ? {n} ?∆0 of Dn as f+

and f−. The cone points of D+
n and D−

n will be denoted simply as + and
−.

Definition 1.4.1. Let S be a class of morphisms of a small ∞-category.
We say S satisfies right Ore condition if for any diagram (n ≥ 1):

D+
n C

Dn

p

p̃

such that p|f+ is in S, there exists p̃ such that p̃|f− is also in S. If moreover
S contains all equivalences and is closed under composition, we call it a
right multiplicative system of C.

Remark 1.4.2. This notion is equivalent to the classical one if C is 1-
category. In particular, if S is a right multiplicative system of C, it is also
a right multiplicative system of hC.

Lemma 1.4.3. Given a right multiplicative system S, SX/ is filtered for
any object X ∈ C.

Proof. By the extension property in the definition.

We need an alternative description of the extension property about Dn.
Any diagram f : En → C provides a map Sn−1 → MapC(f(0), f(n)). An
extension from En to D+

n is equivalent to take a morphism X+ → f(0) and
a null-homotopy:

Sn−1 MapC(f(0), f(n))

∗ MapC(X+, f(n))

Similarly an extension from En to D−
n is equivalent to take a morphism

f(n)→ X− and a null-homotopy:

Sn−1 MapC(f(0), f(n))

∗ MapC(f(0), X−)

9



A further extension to Dn is equivalent to take a large polyhedral diagram
with the two top squares the given null-homotopies and the right square
given by the functoriality of mapping spaces:

MapC(f(0), f(n))

Sn−1

MapC(X+, f(n))

MapC(f(0), X−)

∗

MapC(X+, X−)

The previous discussion leads to the following lemma.
Lemma 1.4.4. Right Ore condition for S is equivalent to that, given any
map Sn−1 → MapC(X,Y ), morphism X ′ → X ∈ S and null-homotopy
square:

Sn−1 MapC(X,Y )

∗ MapC(X
′, Y )

There exists Y → Y ′ ∈ S and an extension of the given square to the
polyhedron:

MapC(X,Y )

Sn−1

MapC(X
′, Y )

MapC(X,Y ′)

∗

MapC(X
′, Y ′)
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If we take the fibers of the squares in the previous lemma, we can obtain
an equivalent formulation in a somewhat easier form.

Corollary 1.4.5. Right Ore condition for S is equivalent to that, given
any morphism s : X → X ′ ∈ SX/ and map Sn−1 → MapCX/

(s, f) (we
write f : X → Y ), there exist s′ : Y → Y ′ ∈ S such that the composition
Sn−1 → MapCX/

(s, f)→ MapCX/
(s, s′f) is null-homotopic.

Moreover, if SY / is filtered for all Y ∈ C, the previous condition is
equivalent to that lim−→s′:Y→Y ′∈SY /

MapCX/
(s, s′f) ' ∗ holds.

Theorem 1.4.6. Being right multiplicative system is equivalent to admitting
calculus of right fractions.

Proof. According to Theorem 1.1.5 and Whitehead theorem, admitting cal-
culus of right fractions is equivalent to that, given any A → B ∈ S, the
following extension problems always have solutions in S:

Sn−1 lim−→X→X′∈SX/
MapC(B,X ′)

∗ lim−→X→X′∈SX/
MapC(A,X

′)

Taking the fibers, and using the fact that filtered colimits commute with
finite limits, we observe that the fibers are always contractible is equivalent
to the last condition in Corollary 1.4.5.
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1.5 Recognition of Localization Functor
We will use the notation En, f+, f−, Dn, D+

n and D−
n introduced in the

beginning of the previous section. The main result in this part will be a
criterion to decide when a functor q is a localization functor with respect to
a calculus of right fractions.

Given a functor q : C → C′, and a class S of morphisms of C that
contains all equivalences, is closed under composition and for any X ∈ C,
the ∞-category SX/ is filtered, we have the following criterion.

Theorem 1.5.1. Assume that q is a categorical fibration. Then S admits
right calculus of fractions and q is a localization functor at S if and only if
the following conditions hold:

1. It is S-invariant;

2. It is essentially surjective;

3. Given any diagram (n ≥ 1), such that p|f− is an equivalence, there
exists extension p̃ with p̃|f− in S:

En C

D−
n C′

q
p̃

p

The most subtle part is to understand the extension property (3), and
we can give a alternative formulation parallel to the discussion of Ore con-
dition in the previous section. Any diagram f : En → C provides a map
Sn−1 → MapC(f(0), f(n)) and a square as in condition (3) gives a commu-
tative square in S:

Sn−1 MapC(f(0), f(n))

∗ MapC′(qf(0), p(X−))

To find a diagonal map is equivalent to find an object X ′ ∈ C such that
q(X ′) ' p(X−) (we need the equivalence of categorical fibrations between
∞-categories and iso-fibrations in this step, cf. .....), and a morphism f(n)→
X ′ ∈ S and an extension of the above square to the following polyhedron:
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MapC(f(0), f(n))

Sn−1

MapC′(qf(0), p(X−))

MapC(f(0), X
′)

∗

MapC′(qf(0), p(X−))

Take the fibers in the above square, we obtain another equivalent for-
mulation:

Corollary 1.5.2. The condition (3) for S is equivalent to that, given any
objects A,X ∈ C, object X0 ∈ C′, morphism f : q(A) → X0 ∈ C/X0

,
equivalence e : q(X) → X0 ∈ C/X0

and map Sn−1 → MapC/q(X)
(f, e), there

exists s : X → X ′ ∈ S such that the composition Sn−1 → MapC/X0
(f, e) →

MapC/X0
(f, q(s)−1e) is nullhomotopic.

Since SX/ is filtered for all X ∈ C, the previous condition is equivalent
to that lim−→s:X→X′∈SX/

MapC/X0
(f, q(s)−1e) ' ∗ holds.

Proof of Theorem 1.5.1. Using the S-invariance of q, given any equivalence
q(X)→ X0, we have the following canonical map:

lim−→X→X′∈SX/
MapC(A,X

′)→ MapC′(q(A), X0)

According to Whitehead theorem, this is an equivalence if and only if the
following extension problems always have solutions in S:

Sn−1 lim−→X→X′∈SX/
MapC(A,X

′)

∗ MapC′(q(A), X0)

Taking the fibers, and using the fact that filtered colimits commute with
finite limits, we observe that the fibers are always contractible is equivalent
to the last condition in Corollary 1.5.2.
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For the necessity of these three conditions, (1) and (2) follows from
definition, and by the discussion of the first section in this chapter, we have
equivalence:

MapS−1 C(A,X) ' colimX→X′∈SX/
MapC(A,X

′)

Hence, the condition (3) is equivalent to the full-faithfulness of S−1 C→ C′.
For the sufficiency, we can apply Theorem 1.1.5 to the previous discussion to
show S admits right calculus of fractions. Then (2) and (3) guarantees the
essential surjectivity and fully-faithfulness of S−1 C→ C′, respectively.

Remark 1.5.3. Actually the conditions (1) and (3) of Theorem 1.5.1 are
enough to show that S admits right calculus of fractions and the induced
functor S−1 C→ C′ is fully faithful.
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1.6 Pullback of Localization Functor
Given a pullback square of small ∞-categories, and a class of morphisms
S ⊆ C:

A C

B D

q′ q

Let S̄ be the class of morphisms f ∈ A, such that the image of f in C

lying in S and the image of f in B being equivalence.

Theorem 1.6.1. In the above pullback square, assume that q is a categorical
fibration and a localization functor at the class S which admits right calculus
of fractions. Then S̄ admits right calculus of fractions and q′ is a localization
functor at S̄.
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1.7 Maximal ∞-Groupoid of Localization
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2 Colimit Indexed by Contractible ∞-Categories
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3 Waldhausen ∞-Category

18



4 Quotient of Stable ∞-Categories
4.1 Quotient by Calculus of Fractions
Definition 4.1.1. Let D be a small stable ∞-category and N ⊆ D a stable
subcategory. The class SN of equivalences mod N consists of morphisms in
D of which cofibers lie in N.

Remark 4.1.2. If the subcategory N is clear in the context, we will write
S for SN for the sake of simplicity.

Definition 4.1.3. An exact functor f : D → D′ between small stable ∞-
categories is N-acyclic if it maps objects of N to zero objects. We will write
Funex

N (D,D′) for the full subcategory of N-acyclic exact functors. A quotient
of D by N is an N-acyclic exact functor q : D → D/N such that it induces
equivalence of categories for any D′:

q∗ : Funex(D/N,D′) ' Funex
N (D,D′)

The quotient of a small stable ∞-category D by any stable subcategory
N is always exist since it is a homotopy pushout in StabCatex

∞:

N D

0 D/N

Here 0 denotes the trivial category since it is zero object in StabCatex
∞. Some-

times such squares are called short exact sequences of stable ∞-categories.

Lemma 4.1.4. An exact functor is N-acyclic if and only if it is SN-
invariant.

Proof. By the definition.

Lemma 4.1.5. The class SN contains all equivalences and is closed under
composition. The ∞-category SX/ is filtered.

Proof. The first two claims can be deduced from the fact that N contains
zero objects and is closed under extension. The category SX/ is equivalent
to N/X by taking fibers. Since N is stable, it admits finite colimits and
hence N/X also admits finite colimits. It follows that N/X is filtered.

The main theorem of this section is the following.

Theorem 4.1.6. The class SN admits calculus of left and right fractions.
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Proof. By applying opposite category, we only need to prove that SN admits
calculus of right fractions. According to Theorem 1.1.5, by the definition of
SN, we have to prove that Mapind -D(N,LX) ' ∗ for any N ∈ N. Using the
stability of D and the fact that filtered colimits commute with π0, we only
need to prove the following filtered colimit of abelian groups is trivial:

lim−→X→X′∈SX/
π0 MapD(N,X ′) ' 0

The following argument justifies our claim. Given any u ∈ π0 MapD(N,X ′),
namely a morphism u : N → X ′, we can take the cofiber of u to get a
morphism X ′ → X ′′ in SN. The composition X → X ′ → X ′′ is in SN and
hence u vanishes in π0 MapD(N,X ′′).

Corollary 4.1.7. The∞-category S−1
N D is stable and the localization func-

tor q : D→ S−1
N D is exact.

Proof. Since SN admits left and calculus of right fractions, by Theorem
1.2.2, q is exact and S−1

N D admits zero objects, finite limits and colimits.
The essential surjectivity and exactness of q implies that ΣΩX ' X ' ΩΣX
for any X ∈ S−1

N D since it holds for D.

We can now establish the following theorem.

Theorem 4.1.8. We have canonical equivalence D/N ' S−1
N D.

Proof. By Theorem 1.2.3 and the above results.

As a corollary, we can show that, the homotopy category of quotient (as
triangulated category) is the Verdier quotient of homotopy categories.

Corollary 4.1.9. We have canonical equivalence of triangulated categories:

hD/hN ' h(D/N)

The left-hand-side is the Verdier quotient of triangulated categories.

Proof. We have a canonical triangulated functor hD/hN → h(D/N) By
universal property. However, The Verdier quotient hD/hN can be seen as
localization of hD at hSN and since taking homotopy categories commutes
with localization, both side is equivalent to hS−1

N hD.
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4.2 Homological Functors
Let D be a stable ∞-category and A be an abelian category. A homological
functor h : D → A is an additive functor that sends cofiber sequences to
exact sequences. If we set hn(X) ' h(Σ−nX), we obtain naturally long
exact sequences for a cofiber sequence X → Y → Z by extending it in both
ends:

· · · → hn+1(Z)→ hn(X)→ hn(Y )→ hn(Z)→ hn−1(X)→ . . .

Notice that, a homological functor is N-acyclic for some saturated subcate-
gory if and only if it is SN-invariant by long exact sequence.

Theorem 4.2.1. Let D be a small stable∞-category and N ⊆ D a saturated
subcategory. Given a homological functor h : D → A that is N-acyclic, the
functor induced by universal property h̃ : D/N→ A is homological.

Proof. Let the quotient functor be q : D → D/N. The point is, any mor-
phism in D/N is equivalent to some q(f) for some morphism f in D. It
follows that any cofiber sequence in D/N is equivalent to the image under
q of certain cofiber sequence in D. So the theorem follows from h ' h̃ ◦ q
and h is homological.

Even if the homological functor is not N-acyclic, we can still extend it to
the quotient while keep it being homological under certain circumstances.

Theorem 4.2.2. Let D be a small stable ∞-category, N ⊆ D a saturated
subcategory and A an abelian category that admits filtered colimits and in
which taking filtered colimits is exact. Given a homological functor h : D→
A, its left Kan extension along quotient functor h̃ : D/N→ A is homological.
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4.3 Compatibility with Small (co-)Limits
Theorem 4.3.1. Let D be a small stable ∞-category and N ⊆ D a stable
subcategory. Assume that D admits coproducts indexed by small set I and
N is closed under such coproducts. Then the quotient D/N admits coprod-
ucts indexed by I and the quotient functor q : D → D/N preserves such
coproducts.

Corollary 4.3.2. Let D be a small stable ∞-category and N ⊆ D a stable
subcategory. Given a regular cardinal κ, assume that D admits κ-small
colimits and N is closed under such colimits. Then the quotient D/N admits
κ-small colimits and the quotient functor q : D → D/N preserves such
colimits.
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4.4 Quotient of Stable Subcategories
Let D be a small stable ∞-category and D0,N ⊆ D stable subcategories.
We will use D0 ∩N to denote the full stable subcategory of D0 with objects
equivalent to some objects in N. By the universal property of quotients, we
have a canonical functor D0 /D0 ∩N → D/N which is not necessarily fully
faithful in general.

Theorem 4.4.1. Suppose that one of the following conditions holds:

1. Any morphism N → X in D with X ∈ D0 and N ∈ N can be extended
to a square with N ′ ∈ D0 ∩N, X ′ ∈ D0 and s ∈ SN:

N X

N ′ X ′

s

2. Any morphism X → N in D with X ∈ D0 and N ∈ N can be extended
to a square with N ′ ∈ D0 ∩N, X ′ ∈ D0 and s ∈ SN:

X N

X ′ N ′

s

Then the canonical functor D0 /D0 ∩N→ D/N is fully faithful.

Proof. We will apply Theorem 1.3.1 to the case when (i) holds and the case
for (ii) can be deduced by using opposite category.

Theorem 4.4.2. Suppose that one of the following conditions holds:

1. For any X ∈ D, there exists s : X → X0 with s ∈ SN and X0 ∈ D0;

2. For any X ∈ D, there exists s : X0 → X with s ∈ SN and X0 ∈ D0;

Then the canonical functor D0 /D0 ∩N→ D/N is equivalence.
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4.5 Kan Extension along Quotient Functors
Let D be a small stable ∞-category and N ⊆ D a stable subcategory. The
quotient functor is denoted as q : D → D/N. Given any exact functor
f : D→ D′, we will study the Kan extension of f along q.

Theorem 4.5.1. The left or right Kan extensions (if exist) of exact functors
between stable ∞-categories along any quotient functor are still exact.

Proof. By using opposite category, we only need to prove the case of left Kan
extension. We can enlarge D′ as in HTT Lemma 5.3.5.7. and without loss of
generality, one can assume that D′ admits small colimits. The construction
of calculus of fractions shows that D/N is a full subcategory of L ind -D, that
the functor L is the localization of ind -D at SN and we have a commutative
square in which i and j are fully faithful:

D/N

D L ind -D

ind -D

jq

i L

The fully-faithfulness of j shows that the restriction of the left Kan extension
of f : D→ D′ along Li ' jq to D/N is the left Kan extension along q. Our
proposition follows if we can show that left Kan extension of exact functor
along i and L are still exact. The claim for i follows from HTT Proposition
5.5.1.9. And the claim for L holds because L admits a right adjoint, which
is the inclusion of L ind -D into ind -D. Hence left Kan extension along L
is just the composition with this inclusion.

We have adjoint functors whenever left Kan extensions always exist.

Funex(D,D′) Funex(D/N,D′)

Fun(D,D′) Fun(D/N,D′)

i!

i∗

i!

i∗

Given exact multi-functor f : D1×D2× · · · × Dn → D and quotients
qi : Di → Di /Ni, the left Kan extension of f along q1× q2× · · · × qn is still
exact if it exists.

Theorem 4.5.2. The left or right Kan extensions (if exist) of exact multi-
functors between stable ∞-categories along product of quotient functors are
still exact.
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Proof. Similar to the proof of the previous theorem, we can use opposite
category and enlarge D′ if necessary, we only need to prove the case of
left Kan extension and D′ admits small colimits. We have equivalence (the
notion Funex((D1,D2, . . . ,Dn),D

′) represents for the full subcategory of
Fun(D1×D2× · · · ×Dn,D

′) that consists of exact multi-functors):

Funex((D1,D2, . . . ,Dn),D
′) ' Funex((D1,D2, . . . ,Dn−1),Funex(Dn,D

′))

Using the previous adjoint functors, we can construct inductively the left
adjoint of restriction q∗:

Funex((D1,D2, . . . ,Dn),D
′) Funex((D1 /N1,D2 /N2, . . . ,Dn /Nn),D

′)
q!

q∗

Notice that, at each stage the left adjoint is the restriction of the left adjoint
defined on Fun(D1×D2× · · · ×Dn,D

′), hence it is the left Kan extension.

Remark 4.5.3. Another way to prove Theoren 4.5.2 is using the tensor
product of small stable ∞-categories to reduce it to Theorem 4.5.1 since we
have equivalence:

Funex((D1,D2, . . . ,Dn),D
′) ' Fun(D1⊗D2⊗ · · · ⊗Dn,D

′)

It follows that, Kan extensions of f along Πiqi is equivalent to Kan extensions
along ⊗iqi:

⊗iqi : D1⊗D2⊗ · · · ⊗Dn → D1 /N1⊗D2 /N2⊗ · · · ⊗Dn /Nn

25



4.6 Quotient of Locally Small Stable ∞-Categories
Definition 4.6.1. A sequence of small (resp. presentable) stable∞-categories
as follows is called exact, if i is fully faithful, qi maps everything to zero
object, and q induces fully faithful embedding D /D′ into D′′ which becomes
equivalence after idempotent completion (resp. becomes equivalence):

D′ D′ D′′i q

Theorem 4.6.2. A sequence of small stable∞-categories is exact if and only
if the corresponding sequence of ind -objects is exact sequence of presentable
stable ∞-categories :

ind -D′ ind -D′ ind -D′′i q

Corollary 4.6.3. Given a compactly generated stable ∞-category D,

D′ D′ D′′i q
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4.7 Pullbacks and Lax Pullbacks
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4.8 Quotient of Diagram ∞-Categories
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5 Homotopy ∞-Category of Additive Categories
The aim of this chapter is to establish the universal property for the bounded
homotopy ∞-category of a small additive category. We begin with some
definitions.

Definition 5.0.1. Let A be an additive category and C an ∞-category. An
additive functor f : A → C is a functor that preserves initial objects and
finite coproducts.

We will use Funadd(A,C) to denote the full subcategory of Fun(A,C)
comprised of additive functors.

The aim of this chapter is to construct what we call the bounded ho-
motopy ∞-category Kb(A) of a small abelian category A (also called ∞-
category of bounded chain complexes, free stable∞-category generated by A

using finite limits and colimits or even longer names, whatever), to compare
our description with the classical homotopy category of chain complexes,
that gives categorical alternative of the classical construction, and then to
establish the following universal property of Kb(A):

Theorem 5.0.2. Let A be a small additive category. The inclusion from A

to its bounded homotopy ∞-category is the initial additive functor towards
stable ∞-categories:

i : A→ Kb(A)

Namely, it induces equivalence of categories for any stable ∞-category D:

i∗ : Funex(Kb(A),D) ' Funadd(A,D)

Hence one can say that Kb(A) is freely generated by A. This theorem
(or just some defintions with comparisons) will be established through the
end of this chapter.
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5.1 Freely Finite-Generated ∞-Category
We will use Funrex(C,C′) to denote the full subcategory of Fun(C,C′) com-
prised by right exact functors.

Definition 5.1.1. Let A be a small additive category. The free ∞-category
generated by A using finite colimits is an additive functor j : A → Kb

≥0(A)
such that it induces equivalence of categories for any ∞-category C that
admits finite colimits:

j∗ : Funrex(Kb
≥0(A),C) ' Funadd(A,C)

Let us use Fun×(C,D) to denote the full subcategory of Fun(C,D) com-
prised of functors that preserve terminal objects and finite products. Notice
that Fun×(C,D)op ' Funadd(Cop,Dop). Using HTT Proposition 5.3.6.2, the
construction Kb

≥0(A) exists and can be identified as the smallest subcategory
of Fun×(Aop, S) (this category is a reflective localization of Fun(Aop, S)) that
contains A and is closed under finite colimits. Also the same proposition
guarantees that j : A → Kb

≥0(A) is fully faithful and Kb
≥0(A) admits zero

objects (we call such ∞-categories pointed). The limits in Fun×(Aop, S)
can be computed termwisely but the colimits gain no clear description from
this general proposition. However, we have the following lemma that will
give us a helping hand, which shows in our case colimits are also computed
termwisely.

Lemma 5.1.2. Given a small additive category A, we have the following
canonical equivalence:

Ω∞ : Fun×(A, Sp≥0) ' Fun×(A, S)

Proof. First, we check that Fun×(A, S) is a so-called additive ∞-category
(cf. SAG Definition C.1.5.1). It is deduced from the fact that Fun×(A, S)
is equivalent to PΣ(A

op) (cf. HTT Definition 5.5.8.8) and hence we can
use SAG Lemma C.1.5.8. Let us denote the ∞-categories of commutative
monoid objects of C as Comm(C), and the subcategory of group-like ones
as CommGrp(C). A combination of HA Propositions 2.4.2.5 and 2.4.3.8 (cf.
SAG Remark C.1.5.3) shows that:

Fun×(A, S) ' Comm(Fun×(A, S))

The right-hand side is equivalent to Fun×(A,Comm(S)) since the forgetful
functor Comm(S) → S reflects finite products. We are left to prove that
Fun×(A,Comm(S)) ' Fun×(A,CommGrp(S)) since Sp≥0 ' CommGrp(S).
The point is, the image of any product-preserving functor f : A→ Comm(S)
is automatically group-like because for any object A ∈ A, the morphism
−idA induces inverse map f(A)→ f(A).
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Remark 5.1.3. The ∞-category Fun×(A, Sp≥0) is pre-stable in the sense
of SAG Definition C.1.2.1.

The previous discussion leads to the following theorem, which gives a
partial description of mapping spaces in Kb

≥0(A):

Theorem 5.1.4. the following properties hold for j : A→ Kb
≥0(A):

1. The suspension functor Σ : Kb
≥0(A)→ Kb

≥0(A) is fully faithful;

2. The functor j is fully faithful and moreover for any n 6= 0 and objects
A,A′ ∈ A we have:

π0 MapKb
≥0(A)(A,Σ

nA′) ' 0

Proof. The fully-faithfulness of j has been shown in the beginning of this
section. The claim (1) follows from the fact that Σ : Sp≥0 → Sp≥0 is fully
faithful. To prove the vanishing of π0, we can embed Sp≥0 into Sp, which pre-
serves small colimits, and it follows that we can regard Fun×(Aop, Sp≥0) as a
full subcategory closed under colimits of the stable∞-category Fun×(Aop, Sp).
Therefore we have equivalence (we use Map to denote the mapping spec-
trum):

MapKb
≥0(A)(A,Σ

nA′) ' ΣnMapFun×(Aop,Sp)(A,A
′)

However, MapFun×(Aop,Sp)(A,A
′) is connective by definition. So the π0 of

the right-hand-side vanishes when n > 0. The case n < 0 is implied by the
fully-faithfullness of j.

Remark 5.1.5. There is a dual notion of free ∞-category generated using
finite limits, which is an additive functor j : A → Kb

≤0(A) such that it
induces equivalence of categories for any ∞-category C that admits finite
limits:

j∗ : Funlex(Kb
≤0(A),C) ' Fun×(A,C)

Here Funlex(C,C′) denotes the full subcategory of Fun(C,C′) comprised of
left exact functors. All results in this section has dual form for Kb

≤0(A) by
taking opposite categories.
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5.2 Freely Finite-Generated Stable ∞-Category
In this section study the stable ∞-category Kb(A), which corresponds to
the classical bounded chain complexes of an additive category A.

Definition 5.2.1. Let A be a small additive category. The free stable ∞-
category generated by A (using finite limits/colimits) is an additive functor
i : A → Kb(A) such that it induces equivalence of categories for any stable
∞-category D:

i∗ : Funex(Kb(A),D) ' Funadd(A,D)

This construction always exists. The reason is that the functor D 7→
Funadd(A,D) preserves small limits and is accessible (it preserves κ-filtered
colimits if A is κ-small). And since StabCatex

∞ is presentable, we can use
representable functor theorem to find Kb(A).

The main result in this section is to provide a criterion to recognize
Kb(A), in order to show in subsequent sections, that the classical construc-
tion using chain complexes satisfies the previous universal property. Before
that, we will show first that Kb(A) is the Spanier-Whitehead∞-category of
Kb

≥0(A), which we introduced in the last section.

Definition 5.2.2. Let C be a small pointed ∞-category that admits finite
colimits. The Spanier-Whitehead ∞-category SW(C) is the direct limit iof
the following diagram in Cat∞:

C C C . . .Σ Σ Σ

We have a canonical functor Σ∞ : C→ SW(C).

The following lemma is from SAG Proposition C.1.1.7:

Lemma 5.2.3. Let C be a small pointed ∞-category that admits finite col-
imits. Then the Spanier-Whitehead ∞-category SW(C) is stable, and the
canonical functor Σ∞ : C → SW(C) induces equivalence of categories for
any stable ∞-category D:

(Σ∞)∗ : Funex(SW(C),D) ' Funrex(C,D)

Moreover, any object of SW(C) is equivalent to iterated desuspensions of
objects of the form Σ∞X, and hence the smallest stable subcategory that
contains the essential image of Σ∞ is equivalent to SW(C) itself.

Corollary 5.2.4. We have canonical equivalence Kb(A) ' SW(Kb
≥0(A)).

Proof. Combine the universal property of Kb
≥0(A) and Lemma 5.2.3.

Remark 5.2.5. Since Kb
≥0(A) is a full subcategory of Kb(A), the pushouts

in Kb
≥0(A) are automatically pullbacks.
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The Spanier-Whitehead construction leads to the following computation
of mapping spaces of Kb(A):

Lemma 5.2.6. The functor i : A → Kb(A) is fully faithful and moreover
for any n 6= 0 and objects A,A′ ∈ A we have:

π0 MapKb(A)(A,Σ
nA′) ' 0

Proof. By the definition, the mapping spaces of Spanier-Whitehead con-
struction has the following description (we identify Σ∞X with X by abuse
of notation):

MapSW(C)(X,ΣnY ) ' lim−→p>−n
MapC(Σ

pX,Σp+nY )

It follows that we have equivalences:

π0 MapKb(A)(A,Σ
nA′) ' lim−→p>−n

π0 MapKb
≥0(A)(Σ

pA,Σp+nA′)

Therefore Theorem 5.1.4 concludes the proof.

Here comes our criterion for Kb(A).

Theorem 5.2.7. Let A be an additive category. Given an additive functor
f : A → D towards a stable ∞-category D, the canonical exact functor
f̃ : Kb(A) → D is an equivalence if and only if the functor f satisfies the
following properties:

1. The smallest stable subcategory of D that contains the essential image
of f is equivalent to D itself;

2. The functor f is fully faithful and moreover for any n 6= 0 and objects
A,A′ ∈ A we have:

π0 MapD(f(A),Σnf(A′)) ' 0

Proof. We have shown that i : A→ Kb(A) satisfies these properties. For the
sake of convenience, we will regard A as full subcategories of both Kb(A)
and D. The property (2) is equivalent to that, f̃ induces the following
equivalence of mapping spectra:

MapKb(A)(A,A
′) 'MapD(A,A

′)

Notice that, after fixing any object A ∈ A, the full subcategory of Kb(A)
comprised of those objects X for which MapKb(A)(A,X) ' MapD(A,X)

holds is a stable subcategory (since f̃ is exact) of Kb(A) that contains A.
It follows from property (1) of Kb(A) that this subcategory is the whole
Kb(A), and a similar argument shows that f̃ is actually a fully faithful
functor. Now we can regard Kb(A) as a full stable subcategory of D and of
course it contains A. So property (1) to D guarantees f̃ is an equivalence
of categories.
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Remark 5.2.8. The proof shows that condition (2) is equivalent to that f̃
is fully faithful.

We can regard Kb
≥0(A) (or dually Kb

≤0(A)) as full subcategory of Kb(A),
and it follows immediately from the construction the following characteri-
zations of these two subcategories:

Theorem 5.2.9. Let A be an additive category. The following holds:

1. The ∞-category Kb
≥0(A) is the smallest full subcategory of Kb(A) that

contains A and is closed under finite colimits;

2. The ∞-category Kb
≤0(A) is the smallest full subcategory of Kb(A) that

contains A and is closed under finite limits.

The following generalization of Lemma 5.2.6 will be used later.

Lemma 5.2.10. The following holds:

1. Given any objects X ∈ Kb
≥0(A) and Y ∈ Kb

≤0(A), for n > 0 we have:

π0 MapKb(A)(X,Σ−nY ) ' 0

2. Given any objects X ∈ Kb
≤0(A) and Y ∈ Kb

≥0(A), for n > 0 we have:

π0 MapKb(A)(X,ΣnY ) ' 0

Proof. Fixing an object A ∈ A, let us use D to denote the full subcategory of
Kb(A) comprised of objects Y that π0 MapKb(A)(A,Σ

−nY ) ' 0 for all n > 0.
The long exact sequence of πn implies that D is closed under finite limits, and
Lemma 5.2.6 shows that D contains A. It follow from Theorem 5.2.9 that
Kb

≤0(A) is generated by A using finite limits, and therefore Kb
≤0(A) ⊆ D. A

similar argument concludes the proof of (1). The proof of (2) is similiar.

34



5.3 Finite A-Decompositions
In this section, we prove that objects in Kb

≥0(A) can be endowed with struc-
ture similar to finite CW-complexes, which is the reason that why such
objects can be represented by chain complexes.

Definition 5.3.1. Let A be an additive category. A finite A-complex X• of
length n in Kb

≥0(A) is a co-tower:

X≤0 → X≤1 → X≤2 → . . . X≤n−1 → X≤n

Together with cofiber sequences such that Xp ∈ A for each p:

ΣpXp+1 → X≤p → X≤p+1

Notice that we have X0 ' X≤0. A morphism f• : X• → Y• between A-
complexes, is a series of morphisms fp : Xp → Yp and f≤p : X≤p → Y≤p

that constitutes morphisms between co-towers and cofiber sequences. Given
an object X ∈ Kb

≥0(A), a finite A-decomposition is a finite A-complex X•
with length n and an equivalence X ' X≤n.

Remark 5.3.2. In general, A-decomposition is not unique.

The main result of this section is the following.

Theorem 5.3.3. Given an additive category A , any object X ∈ Kb
≥0(A)

admits finite A-decomposition.

Before prove that, we need some lemmas first.

Lemma 5.3.4. Given a finite A-complex X•, the cofiber of X≤p → X≤p+i

for i ≥ 0 is contained in Σp+1 Kb
≥0(A).

Proof. We do induction on i. The case i = 0 is trivial. Assume that
cofib(X≤p → X≤p+i) ∈ Σp+1 Kb

≥0(A), the 2-simplex X≤p → X≤p+i →
X≤p+i+1 induces cofiber sequence in Kb(A):

Σ−1 cofib(X≤p+i → X≤p+i+1)→ cofib(X≤p → X≤p+i)→ cofib(X≤p → X≤p+i+1)

Notice that Σ−1 cofib(X≤p+i → X≤p+i+1) ' Σp+iXp+i+1 ∈ Σp+1 Kb
≥0(A),

and by induction assumption, we deduce that cofib(X≤p → X≤p+i) ∈ Σp+1 Kb
≥0(A).

Lemma 5.3.5. Let A be an additive category. Given objects X,Y ∈ Kb
≥0(A)

and their A-decompositions X•, Y•, any morphism f : X → Y can be ex-
tended to morphism between A-complexes f• : X• → Y•.
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Proof. We will construct fp : Xp → Yp and f≤p : X≤p → Y≤p inductively.
Given f≤p : X≤p → Y≤p, to construct f≤p+1, we need to solve the following
extension problem:

X≤p X

X≤p+1

Y≤p Y

Y≤p+1

It is equivalent to the following extension problem:

X≤p X≤p+1

Y≤p+1 Y

By obstruction theory in Kb(A), we only need to show that the induced mor-
phism on cofibers cofib(X≤p → X≤p+1)→ cofib(Y≤p+1 → Y ) is zero. Notice
that cofib(X≤p → X≤p+1) ' Σp+1Xp+1, and hence we can use Lemma 5.2.10
and the previous lemma to show that it is always zero.

After we construct f≤p+1, we can take the fibers of the rows in the
following square to construct fp+1:

X≤p X≤p+1

Y≤p Y≤p+1

Lemma 5.3.6. Let A be an additive category. Given objects X,Y ∈
Kb

≥0(A), their A-decompositions X•, Y•, and morphism f : X → Y . The
cofiber Z ' cofib(X → Y ) admits A-decompositions Z• such that Zp '
Xp−1 ⊕ Yp.

Proof. We use the previous lemma to extend morphism X → Y to X• → Y•
and claim that the following co-tower meets our requirements:

cofib(X≤0 → Y≤1)→ cofib(X≤1 → Y≤2)→ · · · → cofib(X≤p → Y≤p+1)→ · · ·

It is clear that when p is big enough, we have cofib(X≤p → Y≤p+1) '
cofib(X → Y ) ' Z. Let Fp denote the fiber of cofib(X≤p−1 → Y≤p) →
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cofib(X≤p → Y≤p+1), we have cofiber sequence:

Σp−1Xp → ΣpYp+1 → Fp

By Lemma 5.2.10, the morphism Σp−1Xp → ΣpYp+1 is zero, hence we have
equivalence Fp ' Σp(Xp ⊕ Yp+1) and cofiber sequence:

Σp(Xp ⊕ Yp+1)→ cofib(X≤p−1 → Y≤p)→ cofib(X≤p → Y≤p+1)

This justifies our claim.

Now we can prove the main result.

Proof of Theorem 5.3.3. Let D be the full subcategory of Kb
≥0(A) spanned

by objects satisfying this theorem. We claim that D is closed under finite
colimits. It is clear that D admits zero objects and closed under finite
coproducts and the previous lemma shows that it is closed under taking
cofibers. To finish the proof, notice that A ⊆ D and hence we have D '
Kb

≥0(A).

We can use Lemma 5.3.6 to show the pre-stability of Kb
≥0(A) (cf. SAG

Definition C.1.2.1 for the definition of pre-stability).

Corollary 5.3.7. The ∞-category Kb
≥0(A) is pre-stable.

Proof. For any morphism X → ΣY such that X,Y ∈ Kb
≥0(A), Lemma 5.3.6

shows that the its cofiber Z admits A-decomposition Z• with Z≤0 ' 0 and
hence Z ∈ Kb

≥1(A) or Σ−1Z ∈ Kb
≥0(A).

Corollary 5.3.8. Given a small abelian category A, and an object X ∈
Kb

≥0(A). There exists a cofiber sequence with A ∈ A and X ′ ∈ Kb
≥1(A):

A→ X → X ′

Proof. Take a finite A-decomposition of X and let A be X0.

Remark 5.3.9. The results in this section are direct consequences of the
results in the next section. However, our proof here has no dependence on
any strict models of Kb(A).

In the end of this section, we reformulate our main result in a relative
form for later use.

Theorem 5.3.10. Given a morphism X → X ′ ∈ Kb(A) such that jj
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5.4 Bounded Chain Complexes
In this section, we will show that Kb(A) can be constructed by chain com-
plexes, as in the classical theory. Let Chb(A) (resp. Ch(A)) denote the
differential graded category of bounded (resp. unbounded) chain complexes
of A, and Ndg the differential graded nerve construction (cf. HA Construc-
tion 1.3.1.6). We need the following lemma from HA Corollary 1.3.2.16 to
compute homotopy pushouts of chain complexes.
Lemma 5.4.1. Let A be an additive category and suppose we have a pushout
square in Ch(A) (seen as 1-category):

X Y

X ′ Y ′

f

If f is termwisely split, namely each Xn → Yn admits left inverse, then this
is a pushout square in Ndg(Ch(A)).

As direct corollaries, the mapping cone of any map between chain com-
plexes gives out cofiber sequence:

X Y C f
f

For a chain complex X ' · · · → Xn+1 → Xn → Xn−1 → . . . , let t≥nX and
t≤nX denote the truncations of chain complexes · · · → Xn+1 → Xn and
Xn → Xn−1 → . . . respectively. We have cofiber sequence:

t≤nX X t≥n+1X

The following is also cofiber sequence:

ΣnXn+1 t≤nX t≤n+1X

Corollary 5.4.2. We have canonical equivalence Kb(A) ' Ndg(Chb(A)).
Proof. We need to check the two conditions given in Theorem 5.2.7. Ac-
cording to HTT Proposition 1.3.2.10, Ndg(Ch(A)) is stable. The above
discussion shows that Ndg(Chb(A)) is a full subcategory closed under taking
cofiber sequences and desuspensions, and is generated by A using these two
operations. Hence the condition (1) holds. The condition (2) follows from
the representation of mapping spaces of Ndg(Ch(A)) as Hom-complexes (cf.
HA Proposition 1.3.2.23).

Remark 5.4.3. It can be deduced from equivalence Kb(A) ' Ndg(Chb(A))
and the previous characterizations that that Kb

≥0(A) ' Ndg(Chb
≥0(A)) and

Kb
≤0(A) ' Ndg(Chb

≤0(A)). Here Chb
≥0(A) (resp. Chb

≤0(A)) is the dg-category
of non-negatively (resp. non-positively) homological-indexed and bounded
chain complexes of A.
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5.5 Additive Multi-Functors
The universal property of Kb has natural generalizations to multi-functors,
namely functors with many variables as f : C1×C2× · · · × Cn → C. The
category of multi-functors will be denoted as Fun((C1,C2, . . . ,Cn),C).

Definition 5.5.1. Let A1,A2, . . . ,An be additive categories and C an ∞-
category. An additive multi-functors a functor f : A1×A2× · · · × An → C

that preserves initial objects and finite coproducts at each variable.

We will use Funadd((A1,A2, . . . ,An),C) to denote the full subcategory
of Fun((A1,A2, . . . ,An),C) comprised of additive multi-functors.

Theorem 5.5.2. Let A1,A2, . . . ,An be small additive categories and D be a
stable ∞-category. The restriction along An → Kb(An) induces equivalence
of ∞-categories:

Funadd((A1,A2, . . . ,An),D) ' Funex((Kb(A1),Kb(A2), . . . ,Kb(An)),D)

Proof. We have equivalence:

Funadd((A1,A2, . . . ,An),D) ' Funadd((A1,A2, . . . ,An−1),Funadd(An,D))

Similar equivalences also hold for Funex. So we can do induction the prove
our proposition, begin with the universal property of Kb:

Funadd((A1,A2),D) ' Funadd(A1,Funadd(A2,D))

' Funex(Kb(A1),Funex(Kb(A2),D)

' Funex((Kb(A1),Kb(A2)),D)

Remark 5.5.3. The tensor product of small stable∞-categories (cf. [Lurie])
allows us to reformulate Theorem 5.5.2 as:

Funadd((A1,A2, . . . ,An),D) ' Funex(Kb(A1)⊗Kb(A2)⊗ · · · ⊗Kb(An),D)
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5.6 Adjoining Unbounded Resolutions
In this section, we introduce some constructions that will help use to extend
bounded homotopy ∞-category Kb(A) to not necessarily bounded versions
K−(A), K+(A) and K(A).

Let D be a stable ∞-category with a full subcategory D≥0 closed under
direct sums and suspensions. We set D≥n ' ΣnD≥0. A highly connective
cotower with respect to D≥0 is a diagram X• : N(Z≥0) → D satisfying the
property that, for any integer m ≥ 0, there exists n0 ≥ 0 such that for any
n ≥ n0, we have cofib(Xn → Xn+1) ∈ D≥m.

X0 → X1 → X2 → · · · → Xn → . . .

These highly connective cotowers may not have colimits in D, and we can
adjoint such colimits freely to D, the result ∞-category will be denoted by
D−. Dually, one can consider full subcategory D≥0 closed under direct sums
and de-suspensions and we can adjoint limits of highly connective towers
N(Z≥0)

op → D freely to get D+.

Remark 5.6.1. Using the∞-categorical Dold-Kan correspondence (cf. [HA
Section 1.2.4]), the condition D admits colimits of highly connective cotowers
with respect to D≥0 is equivalent to that it admits geometric realizations of
simplicial object X• : N(∆)op → D with the property that all terms Xi ∈ D≥n

for some fixed integer n.

To construct D−, one can follow the ideas of [HTT Section 5.3.6]. How-
ever, the construction given there cannot be applied directly and we have
to make some modifications. The ∞−category D− can be identified as the
full subcategory of ind -D that consists of highly connective cotowers (seen
as ind -objects of D). However, even the stability of D− is not obvious and
we need several propositions to assure that our definition is reasonable.

Proposition 5.6.2. The∞-category D− is full stable subcategory of ind -D.

By Yoneda lemma, the canonical functor D → D− is exact and fully-
faithful and hence we can regard D≥0 as full subcategory of D−. We will use
D−

≥0 to denote the subcategory of D consisting of highly connective cotowers
with each terms Xn ∈ D−. The subcategory D−

≥0 is closed under direct sums
and suspensions and contains D≥0.

Proposition 5.6.3. The ∞-category D− admits colimits of highly connec-
tive cotowers with respect to D−

≥0.

Now we can describe the universal property of the construction D−. Let
D also be a stable ∞-category with a full subcategory D≥0 closed under
direct sums and suspensions, and D admits colimits of highly connective
cotowers with respect to D′

≥0.
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Proposition 5.6.4. The inclusion functor i : D→ D− induced equivalence:

Funex((D,D≥0), (D
′,D′

≥0)) ' Funex,−((D−,D≥0), (D
′,D′

≥0))

The left-hand-side consists of exact functors that sends D≥0 to D′
≥0, and

the right-hand-side moreover preserves colimits of highly connective cotowers
with respect to D≥0.
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5.7 Homotopy ∞-Category
In this section, we study K−(A), K+(A) and K(A) based on our previous
construction of Kb(A).

Definition 5.7.1. Given a stable ∞-category D with a full subcategory
D≥0 closed under direct sums and suspensions, we set D≥n ' ΣnD≥0. A
highly connective tower with respect to D≥0 is a diagram X• : N(Z≥0)→ D

satisfying the property that, for any integer m ≥ 0, there exists n0 ≥ 0 such
that for any n ≥ n0, we have cofib(Xn → Xn+1) ∈ D≥m.

Remark 5.7.2. In fact, for any n′ ≥ n ≥ n0, we have cofib(Xn → Xn′) ∈
D≥m.

Definition 5.7.3. Given a stable ∞-category D with a full subcategory D≥0

closed under direct sums and suspensions, the stable∞-category D− by freely
adjoining highly connective towers with respect to D≥0 to D is the free
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6 Bounded Derived ∞-Category
The aim of this chapter is to establish the universal property for the bounded
derived ∞-category of a small exact category. We begin with some defini-
tions.

Definition 6.0.1. Let E be an exact category and C an ∞-category. We
call a functor f : E → C a δ-functor if it is additive and sends short exact
sequences to cofiber sequences.

We will use Funδ(E,C) to denote the full subcategory of Fun(E,C) com-
prised of δ-functors.

The aim of this chapter is to construct what we call the bounded derived
∞-category Db(E) of a small exact category E with equivalence of trian-
gulated categories hDb(E) ' Db(E)(the latter one is the classical derived
category), that generalizes the classical construction of derived category by
localization, and then to establish the following universal property of Db(E):

Theorem 6.0.2. Let E be a small exact category. The inclusion from E

to its bounded derived ∞-category is the universal δ-functor towards stable
∞-categories:

i : E→ Db(E)

Namely, it induces equivalence of categories for any stable ∞-category D:

i∗ : Funex(Db(E),D) ' Funδ(E,D)

Hence one can say that Db(E) is freely generated by E modulo the rela-
tions given by short exact sequences. This theorem will be established as a
concatenation of several universal properties of a series of constructions in
the subsequent sections (cf. the proof next to Corollary ...).
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6.1 Quasi-Isomorphisms
The bounded chain complexes ∞-category Kb(E) for an exact category E

is naturally equipped with a full stable subcategory Nb(E), which is the
smallest stable subcategory contains cofib(X → Y )→ Z

We call an object X ∈ Kb(A) is acyclic if Hn(X) ' 0 for all n and a
morphism f : X → Y is a quasi-isomorphism if the induced morphisms f∗ :
Hn(X)→ Hn(Y ) are isomorphisms for all n. The full subcategory of acyclic
objects will be denoted as Acb(A) and the class of quasi-isomorphisms as
Q. Using the long exact sequences, we see that Nb(A) is saturated and
Q ' SNb(A) (cf. Definition 4.1.1). As in the classical case, we use localization
at quasi-isomorphisms to define derived category.

Definition 6.1.1. Let A be an abelian category. The bounded derived ∞-
category Db(A) is Q−1 Kb(A) ' Kb(A)/Nb(A).

Let Db(A) denotes the classical derived category (as triangulated cate-
gory). Since Db(A) is stable, its homotopy category can be endowed with
a canonical triangulated structure. By comparing with the definition of
Db(A), using the fact that localization commutes with taking homotopy
categories, we deduce that hDb(A) ' Db(A) as triangulated categories.

The remaining of this section is devoted to study the interrelation of
derived category Db(A) and short exact sequences in A, and finally give a
proof of Theorem 7.0.2.

Lemma 6.1.2. Let A be an abelian category. Given an exact functor f :
Kb(A) → D towards a stable ∞-category D, such that it sends short exact
sequences in A to cofiber sequences. Then f sends short exact sequences of
bounded chain complexes to cofiber sequences.

Proof. Given short exact sequence of bounded complexes 0 → X → Y →
Z → 0, for convenience, assume that their negative terms all vanish. The
proof is to do induction on their truncations. The starting points is t≤0X →
t≤0 Y → t≤0 Z, which is a short exact sequence in A, so f sends it to cofiber
sequence. For the inductive step, we have the following diagram:

ΣnXn+1 t≤nX t≤n+1X

ΣnYn+1 t≤n Y t≤n+1 Y

ΣnZn+1 t≤n Z t≤n+1 Z

The rows are all cofiber sequence and f sends the left column to cofiber
sequence since it is suspensions of short exact sequence in A and f sends
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the middle column to cofiber sequence by inductive assumption. Therefore
f sends the right column to cofiber sequence. The induction ends at some
n because all chain complexes involved here are bounded.

Theorem 6.1.3. Let A be an abelian category. Given an exact functor
f : Kb(A)→ D towards a stable ∞-category D, the following conditions for
f are equivalent:

1. It sends acyclic objects to zero objects;

2. It sends quasi-isomorphisms to equivalences;

3. It sends short exact sequences in A to cofiber sequences.

Proof. The equivalence of (1) and (2) is direct consequence of the definition.
For the case (2) ⇒ (3), given short exact sequence 0 → X → Y → Z → 0
in A, the canonical morphism cofib(X → Y )→ Z is quasi-isomorphism, so
if f sends this morphism to equivalence, it will send that exact sequence to
cofiber sequence. For the case (3)⇒ (1), given any bounded acyclic complex
X as follows (after using (de-)suspension to make Xn at index n), we will
do induction on the length n to prove f(X) is zero object.

Xn+1 → Xn → · · · → X2 → X1 → X0

The case n = 0 is trivial, and in the case n = 1, we have X1 ' X0 and hence
X ' cofib(X1 ' X0) ' 0. For the inductive step, we have the following
diagram with exact rows and columns:

Xn+1 Xn+1 0

Xn+1 Xn Xn−1 . . .

0 Xn/Xn+1 Xn−1 . . .

id

id

id

The rows form a short exact sequence of bounded chain complexes:

0→ Σn cofib(idXn+1)→ X → X/ΣnXn+1 → 0

So by Lemma 7.1.2, f sents it to cofiber sequence, and the left and right
terms become zero objects since we have cofib(idXn+1) ' 0 and the inductive
assumption. It follows that f(X) ' 0.

Corollary 6.1.4. The quotient functor q : Kb(A) → Db(A) sends short
exact sequences of A to cofiber sequences, and it induces a fully faithful
functor for any stable ∞-categories D:

q∗ : Funex(Db(A),D)→ Funex(Kb(A),D)
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The essential image of q∗ consists of exact functors that sends short exact
sequences of A to cofiber sequences.

Proof. By the exactness of q and equivalences in Theorem 7.1.3.

We are ready to establish the universal property of bounded derived
∞-category, which is promised in the very beginning of this chapter.

Proof of Theorem 7.0.2. We can factorize the functor i : A→ Db(A) as:

A→ Kb
≥0(A)→ Kb(A)→ Db(A)

The theorem follows from combining the universal properties of each functor,
provided respectively in Definition 5.1.1, Definition 5.2.1 and Corollary 7.1.4.
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6.2 Quasi-Isomorphisms for Abelian Categories
The bounded chain complexes ∞-category Kb(A) for an abelian category
A is naturally equipped with homological functors Hn : Kb(A)→ A simply
by taking the nth homology object of a chain complex. We call an object
X ∈ Kb(A) is acyclic if Hn(X) ' 0 for all n and a morphism f : X → Y
is a quasi-isomorphism if the induced morphisms f∗ : Hn(X) → Hn(Y )
are isomorphisms for all n. The full subcategory of acyclic objects will be
denoted as Nb(A) and the class of quasi-isomorphisms as Q. Using the
long exact sequences, we see that Nb(A) is saturated and Q ' SNb(A) (cf.
Definition 4.1.1). As in the classical case, we use localization at quasi-
isomorphisms to define derived category.

Definition 6.2.1. Let A be an abelian category. The bounded derived ∞-
category Db(A) is Q−1 Kb(A) ' Kb(A)/Nb(A).

Let Db(A) denotes the classical derived category (as triangulated cate-
gory). Since Db(A) is stable, its homotopy category can be endowed with
a canonical triangulated structure. By comparing with the definition of
Db(A), using the fact that localization commutes with taking homotopy
categories, we deduce that hDb(A) ' Db(A) as triangulated categories.

The remaining of this section is devoted to study the interrelation of
derived category Db(A) and short exact sequences in A, and finally give a
proof of Theorem 7.0.2.

Lemma 6.2.2. Let A be an abelian category. Given an exact functor f :
Kb(A) → D towards a stable ∞-category D, such that it sends short exact
sequences in A to cofiber sequences. Then f sends short exact sequences of
bounded chain complexes to cofiber sequences.

Proof. Given short exact sequence of bounded complexes 0 → X → Y →
Z → 0, for convenience, assume that their negative terms all vanish. The
proof is to do induction on their truncations. The starting points is t≤0X →
t≤0 Y → t≤0 Z, which is a short exact sequence in A, so f sends it to cofiber
sequence. For the inductive step, we have the following diagram:

ΣnXn+1 t≤nX t≤n+1X

ΣnYn+1 t≤n Y t≤n+1 Y

ΣnZn+1 t≤n Z t≤n+1 Z

The rows are all cofiber sequence and f sends the left column to cofiber
sequence since it is suspensions of short exact sequence in A and f sends
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the middle column to cofiber sequence by inductive assumption. Therefore
f sends the right column to cofiber sequence. The induction ends at some
n because all chain complexes involved here are bounded.

Theorem 6.2.3. Let A be an abelian category. Given an exact functor
f : Kb(A)→ D towards a stable ∞-category D, the following conditions for
f are equivalent:

1. It sends acyclic objects to zero objects;

2. It sends quasi-isomorphisms to equivalences;

3. It sends short exact sequences in A to cofiber sequences.

Proof. The equivalence of (1) and (2) is direct consequence of the definition.
For the case (2) ⇒ (3), given short exact sequence 0 → X → Y → Z → 0
in A, the canonical morphism cofib(X → Y )→ Z is quasi-isomorphism, so
if f sends this morphism to equivalence, it will send that exact sequence to
cofiber sequence. For the case (3)⇒ (1), given any bounded acyclic complex
X as follows (after using (de-)suspension to make Xn at index n), we will
do induction on the length n to prove f(X) is zero object.

Xn+1 → Xn → · · · → X2 → X1 → X0

The case n = 0 is trivial, and in the case n = 1, we have X1 ' X0 and hence
X ' cofib(X1 ' X0) ' 0. For the inductive step, we have the following
diagram with exact rows and columns:

Xn+1 Xn+1 0

Xn+1 Xn Xn−1 . . .

0 Xn/Xn+1 Xn−1 . . .

id

id

id

The rows form a short exact sequence of bounded chain complexes:

0→ Σn cofib(idXn+1)→ X → X/ΣnXn+1 → 0

So by Lemma 7.1.2, f sents it to cofiber sequence, and the left and right
terms become zero objects since we have cofib(idXn+1) ' 0 and the inductive
assumption. It follows that f(X) ' 0.

Corollary 6.2.4. The quotient functor q : Kb(A) → Db(A) sends short
exact sequences of A to cofiber sequences, and it induces a fully faithful
functor for any stable ∞-categories D:

q∗ : Funex(Db(A),D)→ Funex(Kb(A),D)
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The essential image of q∗ consists of exact functors that sends short exact
sequences of A to cofiber sequences.

Proof. By the exactness of q and equivalences in Theorem 7.1.3.

We are ready to establish the universal property of bounded derived
∞-category, which is promised in the very beginning of this chapter.

Proof of Theorem 7.0.2. We can factorize the functor i : A→ Db(A) as:

A→ Kb
≥0(A)→ Kb(A)→ Db(A)

The theorem follows from combining the universal properties of each functor,
provided respectively in Definition 5.1.1, Definition 5.2.1 and Corollary 7.1.4.
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6.3 Delta Multi-Functors
The universal property of Db has natural generalizations to multi-functors.
This section is parallel to Section 5.5.

Definition 6.3.1. Let A1,A2, . . . ,An be exact categories and C an ∞-
category. An δ-multi-functors a functor f : A1×A2× · · · ×An → C that is
additive and sends short exact sequences to cofiber sequences at each variable.
at each variable.

We will use Funδ((E1,E2, . . . ,En),C) to denote the full subcategory of
Fun((E1,E2, . . . ,En),C) comprised of δ-multi-functors.

Theorem 6.3.2. Let E1,E2, . . . ,En be small exact categories and D be a
stable ∞-category. The restriction along En → Db(En) induces equivalence
of ∞-categories:

Funδ((E1,E2, . . . ,En),D) ' Funex((Db(E1),Db(E2), . . . ,Db(En)),D)

Proof. Using the induction procedure in the proof of Theorem 5.5.2.

Remark 6.3.3. The tensor product of small stable∞-categories (cf. [Lurie])
allows us to reformulate Theorem 6.3.2 as:

Funδ((A1,A2, . . . ,An),D) ' Funex(Db(A1)⊗Db(A2)⊗ · · · ⊗Db(An),D)
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6.4 Compatibilty with Certain Categorical Constructions
Theorem 6.4.1. Given small abelian categories A, we have canonical equiv-
alence:

Db(Aop) ' Db(A)op

Theorem 6.4.2. Given small abelian categories A1 and A2, we have canon-
ical equivalence:

Db(A1×A2) ' Db(A1)×Db(A2)

Theorem 6.4.3. Given a filtered diagram indexed by I of small abelian
categories with exact functors between them, we have canonical equivalence:

Db(lim−→i∈IAi) ' lim−→i∈I Db(Ai)

Theorem 6.4.4. Given an small abelian category A and its full Serre sub-
category B closed under quotients and subobjects, we have canonical equiv-
alence:

Db(A/B) ' Db(A)/Db
B(A)

Theorem 6.4.5. Given a pair of adjoint functors, that both need to be exact,
between small abelian categories:

A A′

It induces adjoint functors:

Db(A) Db(A′)

We also have some not-so-easy results that will be proved in later chap-
ters.
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7 Bounded Derived ∞-Category of Abelian Cate-
gories

The aim of this chapter is to establish the universal property for the bounded
derived category of a small abelian category. We begin with some definitions.

Definition 7.0.1. Let A be an additive category and C an ∞-category. An
additive functor f : A → C is a functor that preserves initial objects and
finite coproducts. Moreover assume that A is an abelian category, we call
f a δ-functor if it is additive and sends short exact sequences to cofiber
sequences.

We will use Funadd(A,C) and Funδ(A,C) to denote the full subcategory
of Fun(A,C) comprised of additive functors and δ-functors respectively.

The aim of this chapter is to construct what we call the bounded derived
∞-category Db(A) of a small abelian category A with equivalence of trian-
gulated categories hDb(A) ' Db(A)(the latter one is the classical derived
category), that generalizes the classical construction of derived category by
localization, and then to establish the following universal property of Db(A):

Theorem 7.0.2. Let A be a small abelian category. The inclusion from A

to its bounded derived ∞-category is the universal δ-functor towards stable
∞-categories:

i : A→ Db(A)

Namely, it induces equivalence of categories for any stable ∞-category D:

i∗ : Funex(Db(A),D) ' Funδ(A,D)

Hence one can say that Db(A) is freely generated by A modulo the
relations given by short exact sequences. This theorem will be established
as a concatenation of several universal properties of a series of constructions
in the subsequent sections (cf. the proof next to Corollary 7.1.4).
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7.1 Quasi-Isomorphisms
The bounded chain complexes ∞-category Kb(A) for an abelian category
A is naturally equipped with homological functors Hn : Kb(A)→ A simply
by taking the nth homology object of a chain complex. We call an object
X ∈ Kb(A) is acyclic if Hn(X) ' 0 for all n and a morphism f : X → Y
is a quasi-isomorphism if the induced morphisms f∗ : Hn(X) → Hn(Y )
are isomorphisms for all n. The full subcategory of acyclic objects will be
denoted as Nb(A) Acb(A) and the class of quasi-isomorphisms as Q. Using
the long exact sequences, we see that Nb(A) is saturated and Q ' SNb(A)

(cf. Definition 4.1.1). As in the classical case, we use localization at quasi-
isomorphisms to define derived category.

Definition 7.1.1. Let A be an abelian category. The bounded derived ∞-
category Db(A) is Q−1 Kb(A) ' Kb(A)/Nb(A).

Let Db(A) denotes the classical derived category (as triangulated cate-
gory). Since Db(A) is stable, its homotopy category can be endowed with
a canonical triangulated structure. By comparing with the definition of
Db(A), using the fact that localization commutes with taking homotopy
categories, we deduce that hDb(A) ' Db(A) as triangulated categories.

The remaining of this section is devoted to study the interrelation of
derived category Db(A) and short exact sequences in A, and finally give a
proof of Theorem 7.0.2.

Lemma 7.1.2. Let A be an abelian category. Given an exact functor f :
Kb(A) → D towards a stable ∞-category D, such that it sends short exact
sequences in A to cofiber sequences. Then f sends short exact sequences of
bounded chain complexes to cofiber sequences.

Proof. Given short exact sequence of bounded complexes 0 → X → Y →
Z → 0, for convenience, assume that their negative terms all vanish. The
proof is to do induction on their truncations. The starting points is t≤0X →
t≤0 Y → t≤0 Z, which is a short exact sequence in A, so f sends it to cofiber
sequence. For the inductive step, we have the following diagram:

ΣnXn+1 t≤nX t≤n+1X

ΣnYn+1 t≤n Y t≤n+1 Y

ΣnZn+1 t≤n Z t≤n+1 Z

The rows are all cofiber sequence and f sends the left column to cofiber
sequence since it is suspensions of short exact sequence in A and f sends
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the middle column to cofiber sequence by inductive assumption. Therefore
f sends the right column to cofiber sequence. The induction ends at some
n because all chain complexes involved here are bounded.

Theorem 7.1.3. Let A be an abelian category. Given an exact functor
f : Kb(A)→ D towards a stable ∞-category D, the following conditions for
f are equivalent:

1. It sends acyclic objects to zero objects;

2. It sends quasi-isomorphisms to equivalences;

3. It sends short exact sequences in A to cofiber sequences.

Proof. The equivalence of (1) and (2) is direct consequence of the definition.
For the case (2) ⇒ (3), given short exact sequence 0 → X → Y → Z → 0
in A, the canonical morphism cofib(X → Y )→ Z is quasi-isomorphism, so
if f sends this morphism to equivalence, it will send that exact sequence to
cofiber sequence. For the case (3)⇒ (1), given any bounded acyclic complex
X as follows (after using (de-)suspension to make Xn at index n), we will
do induction on the length n to prove f(X) is zero object.

Xn+1 → Xn → · · · → X2 → X1 → X0

The case n = 0 is trivial, and in the case n = 1, we have X1 ' X0 and hence
X ' cofib(X1 ' X0) ' 0. For the inductive step, we have the following
diagram with exact rows and columns:

Xn+1 Xn+1 0

Xn+1 Xn Xn−1 . . .

0 Xn/Xn+1 Xn−1 . . .

id

id

id

The rows form a short exact sequence of bounded chain complexes:

0→ Σn cofib(idXn+1)→ X → X/ΣnXn+1 → 0

So by Lemma 7.1.2, f sents it to cofiber sequence, and the left and right
terms become zero objects since we have cofib(idXn+1) ' 0 and the inductive
assumption. It follows that f(X) ' 0.

Corollary 7.1.4. The quotient functor q : Kb(A) → Db(A) sends short
exact sequences of A to cofiber sequences, and it induces a fully faithful
functor for any stable ∞-categories D:

q∗ : Funex(Db(A),D)→ Funex(Kb(A),D)
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The essential image of q∗ consists of exact functors that sends short exact
sequences of A to cofiber sequences.

Proof. By the exactness of q and equivalences in Theorem 7.1.3.

We are ready to establish the universal property of bounded derived
∞-category, which is promised in the very beginning of this chapter.

Proof of Theorem 7.0.2. We can factorize the functor i : A→ Db(A) as:

A→ Kb
≥0(A)→ Kb(A)→ Db(A)

The theorem follows from combining the universal properties of each functor,
provided respectively in Definition 5.1.1, Definition 5.2.1 and Corollary 7.1.4.
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7.2 Canonical t-Structure
Given an abelian category A, by Theorem 4.2.2, we have homological func-
tors Hn : Db(A)→ A induced from Kb(A).

Definition 7.2.1. Let A be an abelian category. We say an object X ∈
Db(A) is n-connective (resp. n-coconnective) if Hp(X) ' 0 for p < n (resp.
for p > n). The full subcategory of Db(A) comprised of n-connective (resp.
n-coconnective) objects will be denoted as Db

≥n(A) (resp. Db
≤n(A)). We will

call 0-connective (resp. 0-coconnective) objects simply as connective (resp.
coconnective) objects.

The category Db
≥0(A) and Db

≤0(A) are actually localization of Kb
≥0(A)

and Kb
≤0(A) at quasi-isomorphisms. To prove this, we introduce some con-

structions first. Given a chain complex X, we have the following diagram
with exact rows and columns:

. . . Xn+1 dn+1(Xn+1) 0

. . . Xn+1 Xn Xn−1 . . .

0 Xn/dn+1(Xn+1) Xn−1 . . .

id

dn+1

id

The rows form an exact sequence of chain complexes which we will write as:

0→ b′
≥n+1X → X → b≤nX → 0

Notice that b′
≥nX is n-connective and b≤nX is n-coconnective. Also the

map b′
≥nX → X induces isomorphisms on Hp for p ≥ n and X → b≤nX

induces isomorphisms on Hp for p ≤ n. Dually one has:

. . . Xn+1 ker(dn) 0

. . . Xn+1 Xn Xn−1 . . .

0 Xn/ ker(dn) Xn−1 . . .

id

dn

id

The corresponding exact sequence will be denoted as:

0→ b≥nX → X → b′
≤n−1X → 0

Similar results about connectivity holds for these dual constructions. We
also have natural maps b≥nX → b′

≥nX and b≤nX → b′
≤nX which are all

quasi-isomorphisms.
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Theorem 7.2.2. Let A be an abelian category. The following holds:

1. Let Q≥0 ' Q∩Db
≥0(A). We have equivalence Db

≥0(A) ' Q−1
≥0 Kb

≥0(A);

2. Let Q≤0 ' Q∩Db
≤0(A). We have equivalence Db

≤0(A) ' Q−1
≤0 Kb

≤0(A).

Proof. By using opposite category, we only need to prove (2). We have a
natural functor f : Q−1

≤0 Kb
≤0(A) → Db

≤0(A) ⊆ Db(A). First, we prove that
this functor is fully faithful by applying Theorem 1.3.1. It is enough to show
that given X ∈ Kb

≤0(A) and quasi-isomorphism X → X ′ ∈ Kb(A), there
exists quasi-isomorphism X ′ → X ′′ with X ′′ ∈ Kb

≤0(A). The morphism
X → b≤0X meets requirements. The functor f is essentially surjective
follows from the fact that, given any coconnective chain complex X, we have
the quasi-isomorphism X → b≤0X (again) such that b≤0X ∈ Kb

≤0(A).

In the case of abelian categories, we have the following partial general-
izations of Lemma 5.2.6.

Lemma 7.2.3. For any objects X ∈ Kb
≥0(A) and Y ∈ Kb

≤0(A), the map
induced by H0 is isomorphism:

π0 MapKb(A)(X,Y ) ' HomA(H0(X),H0(Y ))

Proof. Using long exact sequences of πn and Lemma 5.2.10, we obtain iso-
morphism:

π0 MapKb(A)(X,Y ) ' π0 MapKb(A)(t≤1X, t≥−1 Y )

So we can assume both X and Y have length 1 and notice that under such
assumption we have X ' cofib(X1

d1−→ X0) and Y ' fib(Y0
d′0−→ Y−1). Now

using the long exact sequence of πn again, we have the following diagram
with exact rows and columns:

0 0 0

0 π0 MapKb(A)(X,Y ) π0 MapKb(A)(X0, Y ) π0 MapKb(A)(X1, Y )

0 π0 MapKb(A)(X,Y0) HomA(X0, Y0) HomA(X1, Y0)

0 π0 MapKb(A)(X,Y−1) HomA(X0, Y−1) HomA(X1, Y−1)

It follows that:

π0 MapKb(A)(X,Y ) ' HomA(coker(d1), ker(d′0)) ' HomA(H0(X),H0(Y ))
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Lemma 7.2.4. Let A be an abelian category. For any objects X ∈ Db
≥0(A)

and Y ∈ Db
≤0(A), the map induced by H0 is isomorphism:

π0 MapDb(A)(X,Y ) ' HomA(H0(X),H0(Y ))

And the following holds for n > 0:

π0 MapDb(A)(X,Σ−nY ) ' 0

Proof. The Theorem 7.2.2 allows us to compute these π0 by the following
filtered colimits:

π0 MapDb(A)(X,Σ−nY ) ' lim−→Y→Y ′∈(Q≤0)Y /
π0 MapKb(A)(X,Σ−nY ′)

We can use Lemma 5.2.10 (1) and Lemma 7.2.3 to decide the right-hand-side
and the theorem follows immediately.

A direct consequence is that we can regard A as full subcategory of
Db(A).

Corollary 7.2.5. Given any abelian category A, the functor towards its
bounded derived ∞-category i : A→ Db(A) is fully faithful.

We have the following characterization similar to Theorem 5.2.9:

Theorem 7.2.6. Let A be an abelian category. The following holds:

1. The ∞-category Db
≥0(A) is the smallest full subcategory of Db(A) that

contains A and is closed under finite colimits;

2. The ∞-category Db
≤0(A) is the smallest full subcategory of Db(A) that

contains A and is closed under finite limits.

Proof. By using opposite category, we only need to prove (1). Let D denote
the smallest full subcategory of Db(A) that contains A and is closed under
finite colimits. It follow from Theorem 5.2.9 that the essential image of
Kb

≥0(A) under the quotient functor is contained in D. However, Theorem
7.2.2 shows that the essential image of Kb

≥0(A) is Db(A) and Db(A) itself
contains A and is closed under finite colimits. Therefore Db(A) ' D.

The last result in this section is to equip Db(A) with a t-structure, of
which heart recovers A.

Theorem 7.2.7. The pair of subcategories (Db
≥0(A),Db

≤0(A)) provides a
t-structure for Db(A), which we call the canonical t-structure. The heart of
the canonical t-structure is equivalent to A:

A ' Db(A)♡

Moreover, the homological functor H0 is equivalent to the bi-side truncation
π0 : Db(A)→ Db(A)♡.
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Proof. The only axiom for t-structure left is that for any object X ∈ Db(A),
there exists cofiber sequence X ′ → X → X ′′ such that X ′ ∈ ΣDb

≥0(A)

and X ′′ ∈ Db
≤0(A). The cofiber sequence b′

≥1X → X → b≤0X meets the
requirements. Definitely, we have A ⊆ Db(A)♡. To prove the inclusion of
the other way around, consider the zig-zag X → b≤0X ← b≥0 b≤0X. If X
is inside the heart, both maps are quasi-isomorphisms and b≥0 b≤0X ∈ A.
This also shows the last claim. The proof has been done.

For stable ∞-category D with t-structure (D≥0,D≤0), let D[a,b] be the
intersection D≥a ∩D≤b.

Theorem 7.2.8. The following is equivalent for t-structures:

1. The smallest stable subcategory containing D♡ is D;

2. Any object in D is contained in some D[a,b].

Proof. (1) ⇒ (2) The union ∪a≤bD[a,b] is the smallest stable subcategory
containing D♡ by induction;

(2)⇒ (1) Using the Postnikov tower forf t-structures.

Notice that bounded t-structure is non-degenerate and its heart cannot
be trivial unless the whole category is trivial.

Definition 7.2.9. We call a t-structure bounded if it satisfies the above
equivalent properties.

Theorem 7.2.10. The canonical t-structure of Db(A) is bounded.

Proof. Using (1) of Theorem 5.2.7.

I do not know whether the following theorem holds for triangulated cat-
egory. Our proof, though simple, uses the ∞-categorical structures in an
essential way.

Theorem 7.2.11. Stable ∞-category that admits bounded t-structure is
idempotent complete.

Proof. We do induction on b − a to prove that each idempotent in D[a,b]

have splitting in D and by using shifting, we only need to prove that for
D[0,n] and do inducion on n. The case n = 0 is equivalent to the idempotent
completeness of D♡ since it is abelian. Now assume that our claim holds
for n and we are going to prove the case n + 1. Using the notation of
[HTT Section 4.4.5], given any idempotent Idem → D[0,n+1] corresponding
to morphism e : X → X, we want to extend it to Idem+. The functoriality
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of truncations leads to a diagram Idem → D∆1 corresponding to the right
square of the following diagram of fiber sequences:

X τ≤nX τ>nX[1]

X τ≤nX τ>nX[1]

e τ≤ne τ>ne[1]

We can extend this Idem→ D∆1 to Idem+ using the fact that this extension
is equivalent to certain colimits that exists pointwisely, since such extensions
always exist for objects in D[0,n] and D[n+1,n+1] ' Σn+1D[0,0] by inductive
assumption. Take the fiber of the resulting extension Idem+ → D∆1 and we
get what we want.

Remark 7.2.12. A stable ∞-category is idempotent complete if and only if
its homotopy category is idempotent complete by [HA Lemma 1.2.4.6].

Corollary 7.2.13. The bounded derived category Db(A) for any small
abelian category A is idempotent complete.
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8 Properties of Derived ∞-Category
8.1 Projective Dimension
Definition 8.1.1. Given an abelian category A and objects X,Y ∈ A, the
nth Ext-group is defined as:

ExtnA(X,Y ) ' π0 MapDb(A)(X,ΣnY )

Remark 8.1.2. These Ext-groups form a bi-variant cohomology theory of
A. Notice that, by Lemma 7.2.4, the negative Ext-groups all vanish and the
0th group is just Hom-group of A.

Definition 8.1.3. Let A be an abelian category. Given an object X ∈ A, the
projective dimension of X is the smallest integer n such that for any p > n,
we have ExtpA(X,−) ' 0, or if such integer does not exist, the projective
dimension of X is ∞, which we will denote as proj.dimX = n or ∞.

Dually, using the vanishing ExtpA(−, X) ' 0 for p > n or not, we can
define the injective dimension of X, writed as inj.dimX = n or ∞.

Lemma 8.1.4. Let A be an abelian category. An object X ∈ A has projective
dimension ≤ n if and only if Extn+1

A (X,−) is left exact. Dually, X has
injective dimension ≤ n if and only if Extn+1

A (−, X) ' 0 is left exact.

Proof. By using opposite category, we only need to show this for injective
dimension. Let hX : Db(A)op → Sp denote the Sp-enriched Yoneda em-
bedding: X 7→ MapDb(A)(X,A), and its restriction to A as h0X , which is
a δ-functor. Notice that, by our assumption of left exactness and long ex-
act sequences of πn, the termwise truncation τ≥−n h

0
X and τ≤−(n+1) h

0
X are

also δ-functors. So by universal property of derived category, the cofiber
sequence τ≥−n h

0
X → h0X → τ≤−(n+1) h

0
X extends to Db(A), and we have

cofiber sequence of exact functors Db(A)op → Sp, which we write as:

h+X → hX → h−X

However, by definition, we know that π0h
−
X(X) ' 0, so Yoneda lemma

implies that the morphism hX → h−X is zero. It follows that the cofiber
sequence Σ−1h−X → h+X → hX splits and hence we have h+X ' Σ−1h−X ⊕ hX .
Still by definition, π−nh

+
X(X) ' 0 for n ≥ p and therefore as a direct

summand, the same holds for hX .

Definition 8.1.5. The global dimension of an abelian category A is the
smallest integer such that for any n > p and objects X,Y ∈ A we have
ExtnA(X,Y ) ' 0, or if such integer does not exist, the global dimension of A
is ∞, which we will denote as gl.dimX = n or ∞.

Corollary 8.1.6. Let A be an abelian category. Then gl.dimA ≤ n if and
only if Extn+1

A (X,Y ) ' 0 for any X,Y ∈ A.
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The argument in the proof of Lemma 5.2.10 can be used here to give a
dual of Theorem 7.2.4, if A has finite global dimension.

Theorem 8.1.7. Let A be an abelian category with global dimension ≤ p.
Given any objects X ∈ Db

≤0(A) and Y ∈ Db
≥0(A), for n > p we have:

π0 MapDb(A)(X,ΣnY ) ' 0

Given X,Y ∈ A, Let E(X,Y ) denote the 1-category with objects the
short exact sequence of the form:

0→ Y → E → X → 0

And morphisms:

0 Y E X 0

0 Y E′ X 0

id id

By 5-lemma, this is actually an 1-groupoid.

Theorem 8.1.8. We have equivalence:

MapDb(A)(X,ΣY ) ' N(E(X,Y ))

In particular, we have Ext1A(X,Y ) ' π0 E(X,Y ).

Proof. ...

The notion of projective dimension is intimately related to the concept
of projective objects in an abelian category.

Definition 8.1.9. Let A be an abelian category, an object X ∈ A is projec-
tive, if the functor HomA(X,−) is exact.

Theorem 8.1.10. Let A be an abelian category. An object X is projective
if and only if proj.dimX = 0.

Proof. Given any short exact sequence 0 → A′ → A → A′′ → 0, we have
long exact sequence:

0→ HomA(X,A′)→ HomA(X,A)→ HomA(X,A′′)→ Ext1A(X,A′)→ . . .

Therefore, HomA(X,−) is exact if and only if Ext1A(X,−) is left exact.

We have the following well-known characterization of zero global-dimensional
abelian group.
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Definition 8.1.11. An abelian category A is split, if all short exact se-
quences in A split.

Theorem 8.1.12. An abelian category A has global dimension 0 if and only
if it is split.

Proof. An abelian category A is split if and only if all of its objects are
projective, or equivalently, have projective dimension 0.

The following lemma will be used later.

Lemma 8.1.13. Let A be an abelian category, and P ∈ A a projective
object. For any object X ∈ Kb(A), we have equivalence:

π0 MapKb(A)(P,X) ' π0 MapDb(A)(P,X) ' HomA(P,H0(X))

Proof. Let D denote the full subcategory of Db(A) comprised of objects X
such that we have the following equivalences for any n:

π0 MapDb(A)(P,Σ
−nX) ' HomA(P,Hn(X))

The long exact sequences and 5-lemma imply that D is stable and the van-
ishing of Ext for P implies that A ⊆ D. Therefore D ' Db(A). This
shows the second equivalence, and the first would follows from a similar
argument.

Given an abelian category A, the additive subcategory of projective ob-
jects will be denoted as Aproj. We can deduce the following corollary imme-
diately.

Corollary 8.1.14. Let A be an abelian category. Given an object X ∈
Kb(Aproj), we have the following equivalence for any object Y ∈ Kb(A):

MapKb(A)(X,Y ) ' MapDb(A)(X,Y )
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8.2 Projective Resolutions
We say A admits enough projectives, if for any object X ∈ A, there exists
an epimorphism P → X such that P is projective.

Theorem 8.2.1. Let A be an abelian category that admits enough pro-
jectives. The exact functor j : Kb(Aproj) → Db(A) induced by universal
property is fully faithful. Moreover, j is an equivalence of categories if and
only if all objects in A have finite projective dimension.

Proof. The fully-faithfulness of j is implied by Remark 5.2.8. First, suppose
that all objects in A have finite projective dimension. To show the last
claim, let An denote the subcategory of A comprised of objects of projective
dimension ≤ n. We will use induction to show that An ⊆ Kb(Aproj). Notice
that A0 ' Aproj, so the case n = 0 is obvious. Assume that An ⊆ Kb(Aproj),
given any object X ∈ An+1, we take an epimorphism from a projective
P → X and take its kernel to form a short exact sequence:

0→ K → P → X → 0

Using long exact sequence of Ext and vanishing of Ext for projectives, we
have equivalences for any p > 0:

ExtpA(K,−) ' Extp+1
A (X,−)

It follows that K ∈ An, hence X ' cofib(K → P ) ∈ Kb(Aproj). By our
assumption, A ⊆ Kb(Aproj) and the theorem follows from that the smallest
stable subcategory of Db(A) that contains A is Db(A) itself.

For the other direction, the full subcategory of objects X that ExtpA(X,−)
is non-zero only for finitely many p is stable in Kb(Aproj) and contains Aproj,
so it is just Kb(Aproj). Therefore any object in Db(A) satisfies this property,
let alone A.
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8.3 Recognition of Bounded Derived ∞-Category
In this section, we give some results to decide whether a stable ∞-category
with t-structure is equivalent to the bounded derived category of its heart,
following the main ideas of the classic [BBD]. We need some special proper-
ties that hold in the case of derived category first.

Definition 8.3.1. Given a stable ∞-category D and a full subcategory E ⊆
D, we say that Ext∗E is generated by Ext1E if any morphism X → Y [n + 1]
(n > 0) with X,Y ∈ E can be factorized as following with Zi ∈ E:

X → Z1[1]→ Z2[2]→ · · · → Zn[n]→ Y [n+ 1]

Remark 8.3.2. To prove that Ext∗E is generated by Ext1E, it is enough to
show that any morphism X → Y [n + 1] (n > 0) with X,Y ∈ E can be
factorized as with Z ∈ E:

X → Z[n]→ Y [n+ 1]

Or dually:
X → Z[1]→ Y [n+ 1]

Lemma 8.3.3. Given a small abelian category A, and an object X ∈
Db

≥0(A). There exists a cofiber sequence with A ∈ A and X ′ ∈ Db
≥1(A):

A→ X → X ′

Proof. Using Corollary 5.3.8.

Theorem 8.3.4. We have that Ext∗A is generated by Ext1A in the bounded
derived category Db(A) for any small abelian category A.

Proof. Given morphism X → Y [n] (n > 1) with X,Y ∈ A in Db(A), we
take the fiber as F :

F → X → Y [n]

By definition F ∈ Db
≥0(A) and we can use the previous lemma to find object

A ∈ A and morphism A→ F of which cofiber lies in Db
≥1(A). The long exact

sequence of homology groups shows that the composition A → F → X is
epimorphism in A hence its cofiber is of form A′[1] with A′ ∈ A. The
composition A→ X → Y [n] vanishes so we have factorization X → A′[1]→
Y [n].

Theorem 8.3.5. Two factorization of ExtnA by Ext1A in the bounded derived
category Db(A) for any small abelian category A.

Lemma 8.3.6. Given a small abelian category A, a stable ∞-category D

with t-structure (D≥0,D≤0), and an exact functor f : A→ D♡, by universal
property, we get an exact functor F : Db(A)→ D, and the following holds:
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1. If f is fully faithful, the functor F induces injection:

Ext1A(X,Y )→ π−1 MapD(F (X), F (Y ))

2. If f is fully faithful, and the essential image f(A) is closed under
extension, the functor F induces isomorphism:

Ext1A(X,Y ) ' π−1 MapD(F (X), F (Y ))

3. If for any 0 ≤ i ≤ n, the functor F induces isomorphisms:

ExtiA(X,Y ) ' π−i MapD(F (X), F (Y ))

Then we have injection:

Extn+1
A (X,Y )→ π−(n+1) MapD(F (X), F (Y ))

Theorem 8.3.7. Given a small stable∞-category D with t-structure (D≥0,D≤0),
the canonical functor Db(D♡)→ D is equivalence if and only if the following
holds:

1. The t-structure is bounded, or equivalently, the smallest stable subcat-
egory that contains D♡ is D itself;

2. We have that Ext∗
D♡ is generated by Ext1

D♡.

Remark 8.3.8. The condition (2) is equivalent to that the following induced
maps are all surjective:

π0 MapDb(D♡)(X,Y [n])→ π0 MapD(X,Y [n])

Notice that, if the t-structure is not bounded, we are still able to deduce the
fully-faithfulness from (2).

Remark 8.3.9. Once we have the functor Db(D♡) → D, these conditions
can be formulated and checked totally inside the homotopy category hD using
its canonical triangulated structure, without any referring to the ∞-category
D. However, to construct that functor, we need more structures than merely
the homotopy category.

Another criterion is:

Theorem 8.3.10. Let D be a small stable∞-category with t-structure. The
canonical functor Db(D♡)→ D is equivalence if and only if it is essentially
surjective.

Proof. We only need to prove that any morphism X → Y [n] (n > 1) for
X,Y ∈ D♡ can be lifted to Db(D♡). Given X → Y [n] in D, by essential sur-
jectivity, its fiber F is equivalent to some object in Db(D♡). The morphism
F → X can be lifted since it is defined by truncations in the t-structure.
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We can deduce some immediate corollaries that may have some interest.

Corollary 8.3.11. Given a small stable ∞-category D with bounded t-
structure (D≥0,D≤0) such that Exti

D♡(X,Y ) ' 0 for n > 1, then the canon-
ical functor Db(D♡)→ D is equivalence.

Corollary 8.3.12. Given a pullback square of small abelian categories with
exact functors between them:

A′×AA′′ A′

A′′ A

If gl.dimA = 0 and gl.dimA′,A′′ ≤ 1, the induced square of bounded derived
∞-categories is pullback of stable ∞-categories:

Db(A′×AA′′) Db(A′)

Db(A′′) Db(A)
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8.4 Uniqueness of Enhancement
The universal property of bounded derived category has an interesting con-
sequence. An ∞-categrical enhancement of a triangulated category T is a
stable ∞-category D with a triangulated equivalence hD ' T. In general,
many different enhancements arise possibly. However, it has to be unique in
the case of derived categories. Before proving this fact, we establish in some
sense a weak universal property for hDb(A). Especially, it shows that if a
triangulated category D with t-structure admits at least one ∞-categorical
enhancement, any exact functor A → D♡ can be extended to triangulated
functor from hDb(A).

Lemma 8.4.1. Given a stable ∞ category D, a small abelian category A

and a functor f : A→ hD satisfying the following properties:

i. For any X,Y ∈ A, we have vanishing for n > 0:

HomhD(f(X), f(Y )[−n]) ' 0

ii. For any short exact sequence 0→ X → Y → Z → 0, its image under
f can be extended to a distinguished triangle:

f(X)→ f(Y )→ f(Z)→ f(X)[1]

Then we have essentially unique 2-step extension:

1. The functor f has an essentially unique lifting to D, and any such
lifting is automatically a δ-functor (cf. Definition 7.0.1):

D

A hD

f̃

f

2. The resulting diagram in (1) has essentially unique extension to the
following diagram with F̃ an exact functor:

D

A Db(A) hD

f̃

f

F̃
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Proof. (1) Let f(A) ⊆ hD be the essential image of A under f , and f̃(A) ⊆
D the full subcategory consists of objects that contained in f(A) in homo-
topy category. Then the lifting problem is equivalent to:

f̃(A)

A f(A)

t
f̃

f

Notice that, by property (i), f̃(A) is 1-category, and therefore t is equivalence
of categories. It follows that the space of this lifting problem is contractible.

Now we show that any such extension f̃ is automatically a δ-functor.
Actually, property (ii) shows that for any short exact sequence, there exists
a null-homotopy in D to fill-in the following square that can make it a cofiber
sequence:

f̃(X) f̃(Y )

0 f̃(Z)

However, any null-homotopy meets our requirement, including the one given
by the image of this short exact sequence under f̃ . The reason is, the space of
such null-homotopies is the path space between null-homotopic morphisms
in MapD(f̃(X), f̃(Z)), which is contractible by (i).

(2) Since f̃ is a δ-functor, the universal property of bounded derived cat-
egory provides us an exact functor F̃ : Db(A)→ D. The diagram presented
in (2) is indexed by ∆3. The sub-diagram indexed by ∂∆3 is commutative
by definition, and it extends essentially uniquely to the full diagram since
hD is 1-category.

The uniqueness of enhancement now follows easily.

Theorem 8.4.2. The triangulated category hDb(A) for small abelian cat-
egory A has essentially unique ∞-categrical enhancement Db(A).

Proof. Given a stable ∞-category D and a triangulated equivalence hD '
hDb(A), we apply the previous lemma with f being the canonical inclusion
A→ hDb(A) ' hD. Notice that, the canonical t-structure of hD ' hDb(A)
gives D a corresponding t-structure and the functor f̃ induces equivalence
D♡ ' A. The resulting exact functor F̃ : Db(A) → D is equivalent to the
one given in Theorem 8.3.7 and by the same theorem, F̃ is an equivalence
of categories (cf. Remark 8.3.9).
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8.5 Derived Category of Finite Diagrams
We will write CK for Fun(K,C) in this section.

Definition 8.5.1. A finite 1-category I is an 1-category with finitely many
isomorphic class of objects and finite Hom-sets.

The canonical t-structure of Db(A) induces a bounded t-structure on
Db(A)I with heart equivalent to AI . Therefore we can use universal property
to construct exact and t-exact functor Db(AI) → Db(A)I which induces
equivalence of hearts.

Theorem 8.5.2. Let A be a small abelian category A and I a finite 1-
category. We have canonical equivalence:

Db(AI) ' Db(A)I

The proof will be given in the end of this section. We prove a lemma
first. Let C be an ∞-category that admits finite limits, and I a finite 1-
category. For any object i ∈ I and object X ∈ C, the right Kan extension of
X (seen as diagram ∆0 → C) along i : ∆0 → I exists since its value on any
object j ∈ I is finite product of X indexed by HomI(j, i). Hence we have a
pair of adjoint functors:

CI C
i∗

i∗

Here i∗ means restriction to value at i, namely i∗F = F (i), and i∗ the right
Kan extension along i : ∆0 → I. Moreover, if C is an abelian category, i∗
is exact since its construction only uses finite products which is exact. The
universal property of derived categories induces a pair of adjoint functors,
that both are exact and t-exact, for small abelian category A:

Db(AI) Db(A)
i∗

i∗

It follows that, for any diagram F : I → A and object A ∈ A, we have
equivalence of mapping spectra (we use Map for mapping spectrum and
Map for mapping space):

MapDb(AI)(F, i∗A) 'MapDb(A)(F (i), A)

Notice that, we can also apply such right Kan extensions to Db(A)I . Also by
the same reason that it is defined by finite products, the right Kan extension
functor i∗ is t-exact:

Db(A)I Db(A)
i∗

i∗
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Similarly, we have equivalence of mapping spectra:

MapDb(A)I (F, i∗A) 'MapDb(A)(F (i), A)

The above discussion is summarized as:

Lemma 8.5.3. We have equivalence of mapping spectrum for any diagram
F : I → A and object A ∈ A:

MapDb(AI)(F, i∗A) 'MapDb(A)I (F, i∗A)

Now let GF '
⊕

i∈I i∗i
∗F (the direct sum is taken among isomorphic

classes of objects in I). Since I is finite, this is a finite direct sum. The
construction G is a functor and we have natural transformation idA → G.

Lemma 8.5.4. The map F → GF is monomorphism for any diagram F .

Proof. For each object j ∈ I the value at i of this map factorized as:

F (j)→ j∗F (j) ↪→
⊕
i∈I

i∗i
∗F

And the map F (j)→ j∗F (j) is equivalent to:

F (j) ↪→
⊕

f∈HomI(j,j)

F (j) ' j∗F (j)

Proof of Theorem 8.5.2. The previous Lemma 8.5.4 shows that for any di-
agram F : I → A, we have short exact sequence 0 → F → GF → F ′ → 0
and it induces natural transformation between fiber sequences of mapping
spectra for any other diagram T : I → A, in which the middle vertical map
is equivalence by Lemma 8.5.3:

MapDb(AI)(T, F ) MapDb(AI)(T,GF ) MapDb(AI)(T, F
′)

MapDb(A)I (T, F ) MapDb(A)I (T,GF ) MapDb(A)I (T, F
′)

Now we can do induction. Theorem 8.3.6 shows that the left and right
vertical map induces isomorphisms on πi for i ≤ 0, monomorphisms on
π−1 and Lemma 8.5.3 implies that the middle vertical map is equivalence.
Hence by five lemma, the left vertical map induces isomorphism on π−1.
However, this claim holds for arbitrary choice of F . Therefore the right
vertical map also induces isomorphisms on π−1. It is implied by (3) of
Theorem 8.3.6 that the left and right vertical maps induce monomorphisms
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on π−2. Proceeding like this, we conclude that the left and right vertical
maps induces isomorphisms on homotopy groups and hence are equivalences.
It follows that, the comparison functor Db(AI) → Db(A)I is fully faithful
on the heart AI and hence fully faithful on the entire derived category.
The boundedness of the induced t-structure on Db(A)I implies that the
comparison functor is also essentially surjective.

Example 8.5.5. Let G be a finite group, then the groupoid BG is a finite
1-category. We have equivalence for any commutative ring R:

Db(R)BG ' Db(RModBG) ' Db(R[G])
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8.6 Filtered Derived Category
Definition 8.6.1. Let A be a small abelian category. The n-filtered cat-
egory of A, denoted by Filn(A) is the full subcategory of A∆n consists of
n-consecutive monomorphisms:

X0 ↪→ X1 ↪→ X2 ↪→ · · · ↪→ Xn−1 ↪→ Xn

The filtered derived category

Remark 8.6.2. Notice that Filn(A) is not abelian unless A is trivial. How-
ever, it is an exact category.

Definition 8.6.3. Let A be a small stable ∞-category. The n-filtered cat-
egory of A, denoted by Filn(A) is the full subcategory of A∆n consists of
n-consecutive monomorphisms:

X0 ↪→ X1 ↪→ X2 ↪→ · · · ↪→ Xn−1 ↪→ Xn
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8.7 Derived Auslander’s Formula
In this section, we give new proof of the result of [Krause]. We claim no
originality in the results in this section.
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9 Derived Functor
Given an abelian category A and a stable ∞-category D with t-structure,
sny additive functor F : A → D♡ can be extended in an essentially unique
way to an exact functor by universal property (by abuse of notation we still
write this as F ):

F : Kb(A)→ D

If f is not exact, we cannot use the universal property of Db(A) to further
extend it to the derived category. However, if D admits small colimits or
limits, we can use left or right Kan extensions to obtain exact functor which
are called right or left derived functor:

RF,LF : Db(A)→ D

By convention, we will use notations RnF (X) ' π−nRF (X) and LnF (X) '
πnLF (X).

Theorem 9.0.1. Let F : A→ D♡ be an additive functor such that D admits
filtered colimits. The right derived functor RF : Db(A)→ D exists and the
following hold:

1. The functor RF is exact;

2. If D≤0 is closed under filtered colimits, RF is left t-exact;

3. If D≤0 is closed under filtered colimits and F is left exact, we have
canonical equivalence for any X ∈ Db

≤0(A):

π0RF (X) ' F (H0(X))

Proof. Exactness is implied by Theorem 4.5.1. Given any object X ∈
Db

≤0(A), we can find object X̄ ∈ Kb
≤0(A) and the value of LR(X) can be

computes as a filtered colimit (cf. Theorem 1.1.2 (2), proof of Theorem 7.2.2
(2) and Theorem 1.3.1):

RF (X) ' colimX̄→Y ∈(Q≤0)X̄/
F (Y )

In particular, RF (X) can be represented as filtered colimits of objects F (Y )
with Y ∈ Kb

≤0(A). Since F maps Kb
≤0(A) into D≤0 by definition and D≤0

is closed under colimits, we have RF (X) ∈ D≤0, which shows the left t-
exactness of RF .

Now assume that F is left exact. First we show that for any X ∈ Kb
≤0(A),

the following equivalence induced by H0(X)→ X holds:

π0F (X) ' F (H0(X))
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The proof is using induction. Let C denote the full subcategory of Kb
≤0(A)

consists of objects X for which the above equivalence holds. We have A ⊆ C

by definition. And since π0F (−) and F (H0(−)) are both left exact functors
(seen as functors Kb

≤0(A) → D♡), five lemma shows that C is closed under
finite limits. It follows that C ' Kb

≤0(A).
Since D≤0 is closed under filtered colimits, π0 commutes with filtered

colimits. The previous discussion shows that:

π0RF (X) ' colimX̄→Y ∈(Q≤0)X̄/
π0F (Y )

Now since morphisms in Q≤0 are quasi-isomorphisms we have π0F (Y ) '
π0F (X̄) ' F (H0(X)) and the morphisms in diagram Y 7→ π0F (Y ) are all
isomorphisms. The contractibility of (Q≤0)X̄/ implies that the right-hand-
side colimit is just F (H0(X)).

Theorem 9.0.2. Let A be a small abelian category and D a stable ∞-
category that admits filtered limits and with t-structure that D≤0 is closed
under filtered colimits. Then taking right derived functor gives fully faithful
functor:

R(−) : Funlex(A,D♡) ↪→ Funt−lex(Db(A),D)

Proof. Actually a more general proposition holds. Let F,G : A → D♡

be additive functors and we only require G is left exact. We write q :
Kb(A) → Db(A) for the canonical functor and q!, q

∗ the left Kan extension
and restriction along q (hence q!F ' RF ). Notice that they form pair of
adjoints and so we have equivalence:

MapFunex(Kb(A),D)(F, q
∗q!G) ' MapFunex(Db(A),D)(q!F, q!G)

By definition, F has its values in D♡ ⊆ D≥0 and by (2) of Theorem 9.0.1,
q∗q!G has its values in D≤0. Therefore we have equivalence:

MapFunex(Kb(A),D)(F, q
∗q!G) ' MapFunex(Kb(A),D)(F, τ≤0(q

∗q!G))

The claim (2) of Theorem 9.0.1 implies G ' τ≤0(q∗q!G) and hence after
restricting back to A, the universal property of Kb justifies our proposition.

If A admits enough injectives, we have a criterion to decide whether a
right t-exact functor G : Db(A)→ D is equivalent to R(π0G|A).

Theorem 9.0.3. Given right t-exact functor G : Db(A) → D such that A

admits enough injectives, D admits filtered colimits and D≤0 is closed under
filtered colimits. then G ' R(π0G|A) if and only if G sends injective objects
of A into the heart of D.
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Proof. First we prove that, for any left exact functor F : A → D♡, the
functor RF maps injective object I into D♡. By definition, left Kan exten-
sion is computed by a colimit indexed by Kb(A)/q(I). However, the dual of
Corollary 8.1.14 shows that Kb(A)/q(I) admits a terminal object, which is
the identity idq(I). Hence we have RF (I) ' F (I) ∈ D♡.

For the converse, we have a canonical morphism G(X)→ R(π0G|A)(X)
induced by the universal property of Kan extension. For the sake of simplic-
ity, we use G0 for π0G|A from now on. Since A generates Db(A), we only
need to show that G(X)→ RG0(X) is equivalence for X ∈ A. The assump-
tion that A admits enough injectives allows us to find an exact sequence
0 → X → I → X ′ → 0 with I injective. We have natural transformation
between fiber sequences:

G(X) G(I) G(X ′)

RG0(X) RG0(I) RG0(X
′)

Notice that for any X ∈ A, π−nG(X) ' π−nRG0(X) ' 0 when n < 0 and
π0G(X) ' π0RG0(X). Also, for any injective I, π−nG(I) ' π−nRG0(I) ' 0
unless n = 0. Therefore we can use induction, that begin with n = 0,
using the long exact sequences induced by the above diagram, to show that
π−nG(X) ' π−nRG0(X) for all n. It follows that G(X) ' RG0(X).

Remark 9.0.4. Under the assumption of the previous theorem, the essential
image of the right derived procedure consists of functors that maps injective
objects of A towards the heart of D.

We can also define derived multi-functor by using Kan extension of multi-
functors (cf. Theorem 4.5.2) with almost verbatim properties and proof.

Theorem 9.0.5. Let F : A1×A2× · · · × An → D♡ be an additive multi-
functor such that D admits filtered colimits. The right derived multi-functor
RF : Db(A1)×Db(A2)× · · · ×Db(An)→ D exists and the following hold:

1. The functor RF is exact;

2. If D≤0 is closed under filtered colimits, RF is left t-exact;

3. If D≤0 is closed under filtered colimits and F is left exact, we have
canonical equivalence for any series of objects Xi ∈ Db

≤0(Ai):

π0RF (X1, X2, . . . , Xn) ' F (H0(X1),H0(X2), . . . ,H0(Xn))

Propositions similar to Theorem 9.0.2 and Theorem 9.0.3 also hold.
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9.1 Derived Mapping Spectrum
As an application, we will re-prove a classical proposition that the mapping
space in derived category is the right derived mapping complexes, without
referring to any projective or injective resolutions. Then we use this to show
that derived category is enriched over Z-complexes, as is expected from the
conventional definition.

Let A be any small abelian category A. The stable∞-category of spectra
Sp admits a canonical t-structure with heart equivalent to the category of
abelian groups, and Sp≤0 is stable under filtered colmits. Therefore the right
derived bi-functor of HomA : Aop×A→ Ab ' Sp♡ exists.

Theorem 9.1.1. We have canonical equivalence:

RHomA(X,Y ) 'MapDb(A)(X,Y )

Proof. The equivalence (cf. ) HomA(X,Y ) ' τ≤0 MapDb(A) for X,Y ∈ A

induces comparison natural transformation RHomA → MapDb(A) by uni-
versal property of Kan extensions. By definition we have:

Rn HomA(X,Y ) ' colimX→X′∈(Q≤0)
op
/X

colimY→Y ′∈(Q≤0)Y /
π0 MapKb(A)(X

′, Y ′[n])

' π0 MapDb(A)(X,Y [n])

' π−nMapDb(A)(X,Y )

Therefore the comparison natural transformation induces isomorphisms of
homotopy groups and is equivalence.

The category of abelian groups Ab is also the heart of the derived cat-
egory D(Z) with canonical t-structure. We have functor i∗ : D(Z) → Sp
that sends abelian groups A to Eilenberg-MacLane spectrum HA. We can
derived the functor HomA with target not Sp but D(Z). Since the functor
i∗ preserves filtered colimits, it also preserves right derived functors. The
universal property implies that MapDb(A) has an essentially unique lifting:

D(Z)

Db(A)op ×Db(A) Sp

i∗

Theorem 9.1.2. The derived category Db(A) has essentially unique D(Z)-
enrichment structure that makes A→ Db(A) to be D(Z)-enriched functor.
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9.2 Deligne Tensor Product of Small Abelian Categories
The following definition is from [Deligne]:

Definition 9.2.1. Let A1 and A2 be small abelian categories. The Deligne
tensor product A1⊠A2 is a right-exact bi-functor:

⊠ : A1×A2 → A1⊠A2

such that it induces equivalence of categories for small abelian category A′:

⊠∗ : Funrex(A1⊠A2,A
′)→ Funrex((A1,A2),A

′)

One can say that ⊠ is the initial right-exact bi-functor.
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10 Unbounded Derived ∞-Category
10.1 Unseparated Derived Category
We will use FunL(C,C′) to denote the full subcategory of Fun(C,C′) com-
prised of functors that preserve small colimits and Funδ

con(A,C) the full
subcategory of Funδ(A,C) of functors that preserve filtered colimits.

Definition 10.1.1. Let A be an abelian category that admits small colimits.
The unseparated derived∞-category is the universal δ-functor that preserves
filtered colimits towards a stable ∞-category that admits small colimits i :
A → Ď(A), namely it induces equivalence of category for any stable ∞-
category D that admits small colimits:

i∗ : FunL(Ď(A),D) ' Funδ
con(A,D)

Theorem 10.1.2. Let A be a small abelian category. We have equivalence:

Ď(ind -A) ' ind - Db(A)

From now on, for a small abelian category A, we will write Ā for ind -A.
Let Ď≥0(Ā) and Ď≤0(Ā) denote ind - Db

≥0(A) and ind - Db
≤0(A) respectively.

Theorem 10.1.3. Let A be a small abelian category. The pair of subcate-
gories (Ď≥0(Ā), Ď≤0(Ā)) form a t-structure of Ď(Ā).
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