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This article is an effort to generalize the corresponding parts in Kashiwara-
Schapira’s book Categories and Sheaves, in which they consider the case of
1-categories. Besides that, the main reference is Lurie’s Higher Topos The-
ory, abbreviated as HTT. We will always refer to the version on his personal
website.
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1 The Comma Construction of ∞-Categories
1.1 Comma Categories
Given a functor f : C → D between ∞-categories and an object d ∈ D, we
will write C/d for C×DD/d. We write S for the ∞-category of spaces.

Given any simplicial set K, we will write the composition K ≃ K×{0} →
K ×∆1 as i0 and we can define i1 in a similar way.

Definition 1.1.1. Given a diagram of simplicial set:

K ′ K K ′′p q

The comma object M(p, q) is the simplicial set with n-simplexes as the fol-
lowing diagrams:

∆n ∆n ×∆1 ∆n

K ′ K K ′′

i0 i1

p q

Remark 1.1.2. We have two natural maps and a simplicial homotopy:

K ′

M(p, q) K

K ′′

pq′

p′ q

The comma object is some kind of so-called lax 2-limit. Many important
constructions in (∞-)category theory are special cases of comma object and
let me exhibit an incomplete list:

Cc/ ≃M(∆0 c−→ C
idC←−− C)

C/c ≃M(C
idC−−→ C

c←− ∆0)

Cd/ ≃M(∆0 d−→ D
f←− C)

C/d ≃M(C
f−→ D

d←− ∆0)

mapC(x, y) ≃M(∆0 x−→ C
y←− ∆0)

C∆1 ≃M(C
idC−−→ C

idC←−− C)

C×D ≃M(C→ ∆0 ← D)

They are actually isomorphic as simplicial sets.
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Lemma 1.1.3. If K is ∞-category, the functor (p′, q′) : M(p, q)→ K ′×K ′′

is inner fibration.
Proof. To fill in a diagram Λn

i → M(p, q) (1 ≤ i ≤ n):

Λn
i Λn

i ×∆1 Λn
i

K ′ K K ′′

i0

f ′ f f ′′

i1

p q

We can fill in f ′ and f ′′ first (or use the given filling-in), then f .

Corollary 1.1.4. If K, K ′ and K ′′ are ∞-categories, the comma object
M(p, q) is ∞-category and the functors p′, q′ are both inner fibrations.

The next two lemmas are immediate consequences of the definition.
Lemma 1.1.5. Given a comma object and two adjacent pullback squares:

L

M ′ K ′

M(p, q) K

M ′′ K ′′

N

r

p

q

s

The canonical map is an isomorphism between simplicial sets:

f : M ′ ×M(p,q) M
′′ → M(pr, qs)

Lemma 1.1.6. Given a comma object and a pullback square:

K ′ L′

M(p, q) K L

K ′′ L′′

p

f

s

tq

We have a canonical pullback of simplicial sets:

M(p, q) M(sp, sq)

M(tp, tq) M(fp, fq)
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Corollary 1.1.7. Given a homotopy pullback of ∞-categories:

X Y

Z W

a

b f c

d

We have a homotopy pullback of mapping spaces:

mapX(x, y) mapY(a(x), a(y))

mapZ(b(x), b(y)) mapW(f(x), f(y))

Proof. Assume that our homotopy pullack of ∞-categories is given by a
pullback of simplicial sets and maps c, d are both categorical fibrations.
Using the previous lemma and equivalence mapX(x, y) ≃ M(∆0 x−→ X

y←−
∆0), we have a pullback of mapping spaces (as simplicial sets) which is
automatically homotopy pullback since the maps between mapping spaces
are Kan fibrations (using the fact that c, d are categorical fibrations).

From now on, we will only take comma objects of ∞-categories, and it
is safe since ∞-categories are closed under taking comma objects.

There are two alternative descriptions of M(C
p−→ D

q←− E). One is the
following pullback:

M(p, q) D∆1

C×E D×D
(p,q)

The other one is the limit of the following zig-zag:

C
p−→ D← D∆1 → D

q←− E

All three descriptions give isomorphic simplicial sets. However, the previous
two are homotopy limits as well. It is because the last two forms of limits are
equivalent in any∞-categories, and the functor D∆1 → D×D is categorical
fibration by HTT corollary 2.4.6.5. As a corollary, if the middle K is ∞-
category, the comma object is invariant under categorical equivalence.
Remark 1.1.8. We can deduce from the pullback description and corollary
1.1.7 that, the mapping space in comma category can be represented as
homotopy pullback (between objects A = (x, a, y) and A′ = (x′, a′, y′)):

mapM(p,q)(A,A
′) mapC(x, x

′)

mapE(y, y
′) mapD(p(x), q(y

′))
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Lemma 1.1.9. Given a diagram of ∞-categories:

C D E

C′ D′ E′

p

f ′ f

q

f ′′

p′ q′

It induces functor between comma categories:

F : M(p, q)→ M(p′, q′)

We have:

1. If f ′, f and f ′′ are fully-faithful, F is fully-faithful.

2. If f ′, f ′′ are equivalences and f is fully-faithful, F is equivalence.

Proof. Given objects A = (x, a, y) and A = (x′, a′, y′) ∈ M(p, q), the map-
ping space between them can be represented as fiber product by the previous
remark:

mapM(p,q)(A,A
′) ≃ mapC(x, x

′)×mapD(p(x),q′(y′)) mapE(y, y
′)

Using this formula is enough to show (1). The claim (2) follows from the
fact that, any morphism in D′ between objects in the essential image of C′

and E′ is equivalent to a morphism in the essential image of D.
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1.2 Lax Fibers of Comma Categories
Theorem 1.2.1. Given two adjacent comma categories of ∞-categories:

K ′

M(p, q) K

M(p′, r) K ′′

L

p

p′

q

r

The following canonical functor admits a right adjoint:

f : M(p′, r)→ M(p, qr)

Proof. For the most convenience, we will write M and M′ for M(p′, r) and
M(p, qr) respectively. The object in M can be seen as tuple (x, a, y, b, z)
such that x ∈ K ′, y ∈ K ′′, z ∈ L and a : p(x) → q(y), b : y → r(z).
Similarly, the object in M′ can be seen as tuple (x′, a′, z′) such that x′ ∈ K ′,
z′ ∈ L and a′ : p(x′) → qr(z′). The definition of f is roughly as taking
(x, a, y, b, z) to (x, q(b) ◦ a, z). Write g for the proposed right adjoint of f .
The definition of g is roughly as taking (x′, a′, z′) to (x′, a′, r(z′), idr(z′), z

′).
There is a natural transformation id → gf that its value at (x, a, y, b, z) is
defined by the diagram:

x p(x) q(y) y r(z) z

x p(x) qr(z) r(z) r(z) z

id

a

id q(b)

b

b id id
q(b)◦a id

We are left to check it is a unit transformation in the sense of HTT defi-
nition 5.2.2.7., that is, to show the following composition is an equivalence
in the homotopy category of spaces (we write C for (x, a, y, b, z) and D for
(x′, a′, z′)):

mapM′(f(C), D)→ mapM(gf(C), g(D))→ mapM(C, g(D))

Basically, it is because both sides are equivalent to a fiber product:

mapK′(x, x′)×mapK(p(x),qr(z′)) mapL(z, z
′)
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Remark 1.2.2. If we combine the squares in the other direction:

L

M(r, q′) K ′

M(p, q) K

K ′′

r

pq′

q

We still have a comparison functor:

f : M(r, q′)→ M(pr, q)

This time, it admits a left adjoint.

Corollary 1.2.3. Given a comma category of ∞-categories:

K ′

M(p, q) K

K ′′

pq′

p′ q

If q is cofinal, q′ is also cofinal.

Proof. Given any object x ∈ K ′, the previous remark guarantees the natural
functor f : M(p, q)x/ → K ′′

p(x)/ admits a left adjoint and therefore it is weak
equivalence. We can use HTT theorem 4.1.3.1. to conclude the proof.

Given a diagram of ∞-categories:

C D E

C′ D′ E′

p

f ′ f

q

f ′′

p′ q′

It induces functor between comma categories:

F : M(p, q)→ M(p′, q′)

Theorem 1.2.4. Given an object D = (x, a, y) ∈ M(p′, q′), we have a
categorical equivalence:

M(p, q)D/ ≃ M(Cx/ → Dp′(x)/ ← Ey/)
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Proof. We have a pullback square:

(D∆1
)a/ (Dp′(x)/)

∆1

Da/ Dp′(x)/

It is because of a dual decomposition of simplicial sets:

∆1 ×∆n+1 ≃ ∆0 ⋆ (∆1 ×∆n)
⨿

∆0⋆∆n

∆1 ⋆∆n

The special case of n = 1 is drawn as follows:

p′(x) · ·

q′(y) · · ·

·

a

We have the following diagram:

Cx/ Dp′(x)/ (D∆1
)a/ Dq′(y)/ Ey/

(Dp′(x)/)
∆1

Da/

Dp′(x)/

r

Notice that the restriction r is trivial Kan fibration. The precise definition
of the functor Ey/ → Dp′(x)/ appeared in this proposition should be the
consecutive composition of Ey/ → Dq′(y)/, any section of r and Da/ →
Dp′(x)/. The limit of the first row is M(p, q)D/ by the very definition, and
it is equivalent to the limit of the bottom border line because the middle
square is pullback. And the last limit is categorical equivalent to M(Cx/ →
Dp′(x)/ ← Ey/) since r is trivial Kan fibration.

Remark 1.2.5. We have a dual version of the previous equivalence:

M(p, q)/D ≃ M(C/x → D/q′(y) ← E/y)
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2 Filtered ∞-Categories
2.1 Cofinality and Filteredness
Lemma 2.1.1. Given a filtered diagram of spaces f : J → S, the following
conditions are equivalent:

1. Its colimit lim−→α∈J f(α) is contractible;

2. It satisfies the following two properties:

(a) Given any α ∈ J, there exists morphism α → α′ such that f(α′)
is non-empty;

(b) Given any α ∈ J and map Sn → f(α), there exists morphism
α → α′ such that the composition Sn → f(α) → f(α′) is null-
homotopic.

Proof. We can consider the filtered systems of sets π0f(−) : J → Set and
π0 mapS(S

n, f(−)) : Jα/ → Set. Since ∗ and Sn are compact objects of S and
π0 commutes with filtered limits, we can reduce the problem to properties
of filtered colimits of sets.

1⇒ 2: The claim follows from the fact that lim−→α→α′∈Jα/
π0 mapS(S

n, f(α′)) ≃
∗ and lim−→α∈J π0f(α) ≃ ∗.

2 ⇒ 1: The assumption implies that lim−→α→α′∈Jα/
π0 mapS(S

n, f(α′)) ≃
∗ and lim−→α∈J π0f(α) ≃ ∗. Now use the criterion that a space X ∈ S is
contractible if and only if π0X is non-empty and π0 mapS(S

n, X) ≃ ∗.

Lemma 2.1.2. Given an ∞-category C such that for any y ∈ C, Cy/ is
filtered, C itself is filtered if and only if for any objects x, y ∈ J, the following
filtered colimit is contractible:

lim−→y→y′∈Cy/
mapJ(x, y

′) ≃ ∗

Proof. The previous lemma shows that the assumptions in the criterion
for filteredness given by HTT proposition 5.3.1.15. (together with HTT
definition 5.3.1.1.) is equivalent our assumption.

We write |K| for the geometric realization of simplicial set K.

Lemma 2.1.3. Given a functor f : J→ C between ∞-categories and object
x ∈ C, we have an equivalence:

lim−→α∈J mapC(x, f(α)) ≃ | Jx/ |
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Proof. The geometric realization of Jx/ is equivalent to the homotopy colimit
of the diagram p : J→ S which is given by applying (reverse) Grothendieck
construction to the left fibration Jx/ → J (cf. HTT corollary 3.3.4.6.). The
left fibration Jx/ → J is pullback of Cx/ → C along f , so by Yoneda lemma,
we have p(−) ≃ mapC(x, f(−)).

Theorem 2.1.4. Given a functor f : J→ C between ∞-categories such that
J is filtered, the following conditions are equivalent:

1. f is cofinal;

2. For any x ∈ C, Jx/ is filtered;

3. The following properties hold:

(a) Given any x ∈ C, there exists morphism x→ f(j);
(b) Given any x ∈ C, j ∈ J and map Sn → mapC(x, f(j)), there exists

morphism j → j′ such that the composition Sn → mapC(x, f(j))→
mapC(x, f(j

′)) is null-homotopic.

Proof. 2⇒ 1: That Jx/ is filtered implies it is contractible (cf. HTT lemma
5.3.1.20.), and we can use the criterion HTT theorem 4.1.3.1.

1⇔ 3: We have lim−→J
mapC(x, f(−)) ≃ | Jx/ | by the previous lemma, and

the claim follows from lemma 2.1.1.
3 ⇒ 2: The mapping space in Jx/ between A : x → f(j) and A′ : x →

f(j′) can be represented by homotopy pullback:

mapJx/
(A,A′) ∗

mapJ(j, j
′) mapC(x, f(j

′))

A′

We can combine corollary 1.1.7 and HTT proposition 2.4.4.3. (2) to prove
this fact. Back to the track, our strategy is to apply lemma 2.1.2. Notice that
we have restriction functor (Jx/)A′/ → Jj′/ that is a trivial Kan fibration.
Therefore we have to show that (A′′ is the composition x→ f(j′)→ f(j′′)):

lim−→j′→j′′∈Jj′/
mapJx/

(A,A′′) ≃ ∗

Using the above pullback square and the fact that filtered colimits com-
mute with pullbacks in S, it is enough to show lim−→j′→j′′∈Jj′/

mapJ(j, j
′′) ≃ ∗

and lim−→j′→j′′∈Jj′/
mapC(x, f(j

′′)) ≃ ∗. We can use the previous lemma to
compute these filtered colimits, provided the facts that Jj′/ → J is cofinal
(since (Jj′/)j′′/ ≃ Jj′′/ and hence filtered) and the composition of two cofinal
functors Jj′/ → J→ C is cofinal (cf. HTT proposition 4.1.1.3. (2)).
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Remark 2.1.5. By lemma 2.1.7 below, under the assumptions of the pre-
vious theorem, C has to be filtered.

The following theorem concerns some natural cofinality that arises from
filtered ∞-categories and cofinal functors between them.

Theorem 2.1.6. Given a diagram of filtered∞-categories with cofinal func-
tors p and q:

J
p−→ J′

q−→ J′′

The following propositions hold:

1. For any j′ ∈ J′, Jj′/ → J is cofinal;

2. For any j ∈ J, Jj/ → Jp(j)/ is cofinal;

3. For any j′′ ∈ J′′, Jj′′/ → J′j′′/ is cofinal;

4. For any morhphism f : j′′ → q(j′) ∈ J′′, the induced functor Jj′/ →
Jj′′/ is cofinal.

Proof. (1) Given j ∈ J, we have trivial Kan fibration (Jj′/)j/ → Jj/ and
therefore (Jj′/)j/ is contractible.

(2) This is a special case of (4).
(3) Given A : j′′ → q(j′) ∈ J′j′′/, we have trivial Kan fibration (Jj′′/)A/ →

Jj′/ and by the cofinality of p we conclude that (Jj′′/)A/ is contractible.
(4) The morphism f can be seen as object of J′j′′/. By (3), the functor

Jj′′/ → J′j′′/ is cofinal and therefore (Jj′′/)f/ is filtered by the previous the-
orem. We have trivial Kan fibration r : (Jj′′/)f/ → Jj′/ and by (1), cofinal
functor r′ : (Jj′′/)f/ → Jj′′/. The functor appeared in claim (4) is defined by
taking any section of r and composing it with r′, and the result is cofinal.

We conclude this section by two criteria for filteredness.

Lemma 2.1.7. Given a functor f : J → J′ between ∞-categories, if J is
filtered and f is cofinal, J′ is also filtered.

Proof. There is a characterization of filtered ∞-categories that they are
precisely those∞-categories by which colimits (of spaces) are indexed could
commutes with finite limits (of spaces) (cf. HTT proposition 5.3.3.3.). Since
cofinal functor keeps colimits invariant, if J has this property, J′ also has
this property.

Lemma 2.1.8. Given a functor f : J → J′ between ∞-categories, if J′ is
filtered and f is right exact (cf. HTT definition 5.3.2.1.), J is also filtered.

Proof. The pullback of identity idJ′ : J
′ → J′ along f is the identity idJ :

J→ J. By the definition of right exact functors, since J′ is filtered, J is also
filtered.
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2.2 Comma Category of Filtered Categories
Lemma 2.2.1. Given a diagram of ∞-categories such that C is contractible
and q is cofinal:

C
p−→ D

q←− E

Then the comma category M(p, q) is contractible.

Proof. By corollary 1.2.3, there exists cofinal functor M(p, q) → C, and
cofinal functors are weak equivalences by HTT proposition 4.1.1.3. (3).

Theorem 2.2.2. Given a diagram of ∞-categories:

C D J

C′ D′ J′

p

f ′ f

q

f ′′

p′ q′

If it satisfies the following conditions:

1. J and J′ are filtered;

2. q, q′, f ′ and f ′′ are cofinal.

The induced functor between comma categories is cofinal:

F : M(p, q)→ M(p′, q′)

Notice that under these assumptions, D and D′ are both filtered by
lemma 2.1.7, and f is cofinal by HTT proposition 4.1.1.3. (2).

Proof. Our strategy is to use theorem 1.2.4 to represent M(p, q)D/ (D =
(x, a, y)) as comma category M(Cx/ → Dp′(x)/ ← Jy/) and then the previous
lemma to show its contractibility. Since f ′ is cofinal, Cx/ is contractible. We
are left to show that Jy/ → Dp′(x)/ is cofinal. By definition, this functor
factors as Jy/ → Jq′(y)/ → Dq′(y)/ → Dp′(x)/ and hence it is cofinal as being
composition of cofinal functors by theorem 2.1.6 (2), (3) and (4).

Theorem 2.2.3. Given a comma category of ∞-categories such that J′, J′′
are filtered and q is cofinal:

J′

M(p, q) J

J′′

pq′

p′ q

The following propositions hold:
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1. M(p, q) is filtered;

2. The functors q′, p′ and (q′, p′) from M(p, q) to J′, J′′ and J′× J′′ are
cofinal.

Proof. (1) By lemma 2.1.8, it is enough to show that q′ is right exact, namely
to prove that for any j′ ∈ J′, M(p, q)/j′ is filtered. Using the following
diagram:

J′ J J′′

J′ ∆0 ∆0

p

idJ′

q

Remark 1.2.5 shows that M(p, q)/j′ ≃ M(J′/j′
p̄−→ J

q←− J′′) (p̄ is the composi-
tion J′/j′ → J′

p−→ J). Then we use the following diagram:

∆0 J J′′

J′/j′ J J′′

p(j′)

idj′ idJ

q

idJ′′

p̄ q

Notice that idj′ is terminal object of J′/j′ , so the left vertical map is cofinal.
We can apply the previous theorem and it follows that the induced functor
J′′p(j′)/ → M(p̄, q) ≃ M(p, q)/j′ is cofinal. Theorem 2.1.4 (2) implies that
J′′p(j′)/ is filtered. Then lemma 2.1.7 shows M(p, q)/j′ is filtered.

(2) The following are equivalences:

J′ ≃M(J′ → ∆0 ← ∆0)

J′′ ≃M(∆0 → ∆0 ← J′′)

J′× J′′ ≃M(J′ → ∆0 ← J′′)

We can use remark 1.2.5 and these equivalences to represent M(p, q)x/ (for
x ∈ J′, J′′ or J′× J′′) and use lemma 2.2.1 to show its contractibility.
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2.3 Lax Limit of Filtered ∞-Categories
This section begins with an introduction to a special kind of diagrams.

Lemma 2.3.1. For simplicial set K, the following properties are equivalent:

1. It is categorically equivalent to a minimal ∞-category, which has only
finitely many non-degenerate simplexes.

2. It is categorically equivalent to a finite minimal 1-category that the
length of composable non-identity morphisms has finite upper bound.

Proof. (2) ⇒ (1) Using the description of the non-degenerate simplexes in
nerve of 1-category.

(1) ⇒ (2) Assume that K ≃ C and C is a minimal ∞-category, we only
need to show that C is actually an 1-category, and then we can use the
description of the non-degenerate simplexes in nerve of 1-category again to
conclude the proof.

Notice that, if C satisfies (1) then for any objects x, y ∈ C, mapC(x, y)
also satisfies (1). To prove this claim, we use the model mapR

C (x, y) (cf.
discussion before HTT proposition 1.2.2.3.). A simplex ∆n → mapR

C (x, y) is
a simplex ∆n+1 → C satisfying some properties and we can see that if the
latter is degenerate, the former is also degenerate (except when n = 0 and
x = y, there is another possibility that the 0-simplex represents idx). This
is enough to show our claim.

If C is a Kan complex, it has to be a finite set. To show this, given any
object x ∈ C, if π1(X,x) is nontrivial, we can take some γ : ∆1 → C to
represent a non-trivial loop. We have a categorical equivalence:

Spinen ≃ ∆{0,1}
⨿
∆{1}

∆{1,2}
⨿
∆{2}

· · ·
⨿

∆{n−1}

∆{n−1,n} → ∆n

Take the map Spinen → C which maps each ∆{i,i+1} to γ, and then exdend
it to ∆n. The resulting n-simplex cannot be degenerate and hence it con-
tradicts our assumption. We apply this observation to Ωn C and we find out
that all higher homotopy groups of C are trivial. Finally, for the original C,
the previous discussion applied to mapC(x, y) show it is a finite set.

Definition 2.3.2. A simplicial set K is called very small if it satisfies the
above two (equivalent) properties.

Let p : X → K be a cocartesian fibration of ∞-categories, we will write
Sectp for the ∞-category Map/K(id, p) of sections of p. Our main result in
the section is the following:

Theorem 2.3.3. Let p : X → K be a cocartesian fibration such that K is
very small and all fibers of p are filtered. Then for any object i ∈ K, the
evaluation functor Sectp → p−1(i) is cofinal. In particular, Sectp is filtered
and hence non-empty.
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Before the proof, we should establish some lemmas. Given a small sim-
plicial set K, a cocartesian fibration p : X → K▷ over its right cone, let us
call the cone point X and the base change of p to K will be named p0. We
have the following square and natural transformation η : ti∗ → dj∗:

Sectp0

Sectp Fun(K, p−1(X))

p−1(X)

t

η

i∗

j∗ d

Lemma 2.3.4. The previous square induces equivalence:

Sectp ≃ M(Sectp0 → Fun(K, p−1(X))← p−1(X))

The functor i∗ is the restriction of sections to K, j∗ the restriction to
cone point X and d the diagonal functor which sends an object to the con-
stant diagram. The functor t is defined by cocartesion lifting by solving
the following extension problem (with the requirement that for each i ∈ K,
the image of i ×∆1 in X should be p-cocartesian) and then restricting the
diagonal map to K × {1}.

K × {0} X

K ×∆1 K▷

s

p

q

The natural transformation is defined similarly by the following extension
problem:

K × Λ2
0 X

K ×∆2 K▷

s

p

q

Theorem 2.3.5. Let p : X → K be a cocartesian fibration such that K is
very small and all fibers of p are filtered. Then we have:

1. The ∞-category Sectp is filtered and hence non-empty;

2. For any object i ∈ K, the evaluation functor Sectp → p−1(i) is cofinal.
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Proof. We can assume that K is equivalent to the nerve N(C) of some mini-
mal 1-category. By definition we can find a maximal object of C, namely an
object X such that admits no morphism towards other object. Let C0 be the
full subcategory consists of objects other than X, and C0

/X the over-category
C0×C C/X . We have a natural simplicial homotopy:

C0

C0
/X C

∆0

iq

X

Let us denote the pullback of p along i and qi as p0 and p0X . We have a
natural equivalence induced by this simplicial homotopy:

Sectp ≃ M(Sectp0 → Sectp0X → Fun(C0
/X , p−1(X))← p−1(X))

Let us denote the right-hand-side as M . The reason for our claim is, we
have pushout of simplicial set:

N(C0
/X) N(C0)

N(C0
/X)▷ N(C)

This is also a homotopy pushout in Joyal model structure. Therefore we
have equivalence:

Fun(C,D) ≃ Fun(C0,D)×Fun(C0
/X ,D) Fun((C0

/X)▷,D)

The comma object in question can also be represented as:

M ≃ Fun(C0,D)×Fun(C0
/X ,D) Fun(C0

/X ⋄∆
0,D)

By HTT proposition 4.2.1.2., we justify our claim.
Now we can do induction on the cardinality of the isomorphic-classes of

objects in C. We have the following diagram:

ind - Fun(C0,D) ind - Fun(C0
/X ,D) ind -D

Fun(C0, ind -D) Fun(C0
/X , ind -D) ind -D

f
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By our previous discussion, the inductive assumption, lemma 1.1.9 and the-
orem 3.0.3 , we only need to show the middle vertical functor f is fully-
faithful. Using HTT proposition 5.3.5.11., it is enough to show the essential
image of the following inclusion consists of compact objects:

Fun(C0
/X ,D)→ Fun(C0

/X , ind -D)

The point is, N(C0
/X) is a finite simplicial set, and hence the mapping space

between two functors in Fun(C0
/X , ind -D) is a canonical finite limit of map-

ping spaces between the values of each functor. Using the fact that filtered
colimits commute with finite limits, we conclude our proof.
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3 Applications to Ind-Objects
In the last section of this article, we apply the results established in previous
sections to ind -objects.

Lemma 3.0.1. Given a filtered diagram p : J → C which represents X ∈
ind -C, the canonical functor p̃ : J→ C/X is cofinal.

Proof. We will use lemma 2.1.3 to show cofinality. That means we have to
prove that given any A : Y → X ∈ C/X , we have:

lim−→α∈J mapC/X
(A, p(α)→ X) ≃ ∗

The mapping space in C/X between A : Y → X and A′ : Y ′ → X can be
represented as homotopy pullback:

mapC/X
(A,A′) ∗

mapC(Y, Y
′) mapC(Y,X)

A

A′◦−

Since Y is compact in ind -C, we have lim−→α∈J mapC(Y, p(α)) ≃ mapC(Y,X),
and the bottom map becomes equivalence after taking colimit, so its fiber
is contractible.

Theorem 3.0.2. Given a morphism f : X → X ′ ∈ ind -C and two filtered
diagrams p : J → C and q : J′ → C that represents X and X ′ respectively,
there exists filtered ∞-category J′′, cofinal maps p′ and q′ and natural trans-
formation pp′ → qq′ that represents f :

J

J′′ C

J′

pp′

q′ q

Proof. We have a diagram such that q̃ is cofinal by the previous lemma:

J C/X C/X′ J′
p̃ f! q̃

Then M(f!p̃, q̃) is what we want by theorem 2.2.3.

Theorem 3.0.3. Given a diagram of ∞-categories K ′ p−→ K
q←− K ′′, the

following canonical functor is an equivalence:

ind - M(K ′ → K ← K ′′) −→ M(ind -(K ′ → K ← K ′′))

18



Proof. Without loss of generality, we assume K ′, K and K ′′ are∞-categories.
Let us focus on the restriction first:

M(K ′ → K ← K ′′) −→ M(ind -(K ′ → K ← K ′′))

This functor is fully-faithful by definition, and we will prove that its image
consists of compact objects. Given (x, a, y) ∈ M(K ′ → K ← K ′′) and
(x′, a′, y′) ∈ M(ind -(K ′ → K ← K ′′)), the mapping space between them
can be represented as fiber product (cf. remark 1.1.8):

mapind -K′(x, x′)×mapind - K(p(x),q(y′)) mapind -K′′(y, y′)

Since ind -K ′ → ind -K and ind -K ′′ → ind -K preserve filtered colimits,
the functor mapind -K′(X,−)×mapind - K(p(X),q(−)) mapind -K′′(Y,−) preserves
filtered colimits. We finished our proof of compactness.

By HTT proposition 5.3.5.11., we are left to prove the canonical functor
in our proposition is essentially surjective. Given (x′, a, y′) ∈ M(ind -(K ′ →
K ← K ′′)) and represented x′ and y′ by f : J → K ′ and g : J′ → K ′′

respectively. We can apply theorem 3.0.2 to the map a : p(x′)→ q(y′), and
hence we can assume J ≃ J′ and the map is given by a natural transformation
pf → qg. Notice that the latter form can be seen as a diagram J→ M(K ′ →
K ← K ′′), and essential surjectivity follows.

We have the following generalization of HTT proposition 5.3.5.15.

Lemma 3.0.4. For simplicial set K, the following properties are equivalent:

1. It is categorically equivalent to a minimal ∞-category, which has only
finitely many non-degenerate simplexes.

2. It is categorically equivalent to a finite minimal 1-category that the
length of composable non-identity morphisms has finite upper bound.

Proof. (2) ⇒ (1) Using the description of the non-degenerate simplexes in
nerve of 1-category.

(1) ⇒ (2) Assume that K ≃ C and C is a minimal ∞-category, we only
need to show that C is actually an 1-category, and then we can use the
description of the non-degenerate simplexes in nerve of 1-category again to
conclude the proof.

Notice that, if C satisfies (1) then for any objects x, y ∈ C, mapC(x, y)
also satisfies (1). To prove this claim, we use the model mapR

C (x, y) (cf.
discussion before HTT proposition 1.2.2.3.). A simplex ∆n → mapR

C (x, y) is
a simplex ∆n+1 → C satisfying some properties and we can see that if the
latter is degenerate, the former is also degenerate (except when n = 0 and
x = y, there is another possibility that the 0-simplex represents idx). This
is enough to show our claim.

19



If C is a Kan complex, it has to be a finite set. To show this, given any
object x ∈ C, if π1(X,x) is nontrivial, we can take some γ : ∆1 → C to
represent a non-trivial loop. We have a categorical equivalence:

Spinen ≃ ∆{0,1}
⨿
∆{1}

∆{1,2}
⨿
∆{2}

· · ·
⨿

∆{n−1}

∆{n−1,n} → ∆n

Take the map Spinen → C which maps each ∆{i,i+1} to γ, and then exdend
it to ∆n. The resulting n-simplex cannot be degenerate and hence it con-
tradicts our assumption. We apply this observation to Ωn C and we find out
that all higher homotopy groups of C are trivial. Finally, for the original C,
the previous discussion applied to mapC(x, y) show it is a finite set.

Definition 3.0.5. A simplicial set K is called very small if it satisfies the
above two (equivalent) properties.

Theorem 3.0.6. Given an ∞-category D and very small simplicial set K,
the comparison functor is equivalence:

ind -(DK)→ (ind -D)K

Proof. We can assume that K is the nerve N(C) of some minimal 1-category.
By definition we can find a maximal object of C, namely an object X such
that admits no morphism towards other object. Let C0 be the full subcate-
gory consists of objects other than X, and C0

/X the over-category C0×C C/X .
We have a natural simplicial homotopy:

C0

C0
/X C

∆0

p

X

We have a natural equivalence induced by this simplicial homotopy:

Fun(C,D) ≃ M(Fun(C0,D)→ Fun(C0
/X ,D)← Fun(∆0,D))

Let us denote the right-hand-side as M . The reason for our claim is, we
have pushout of simplicial set:

N(C0
/X) N(C0)

N(C0
/X)▷ N(C)
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This is also a homotopy pushout in Joyal model structure. Therefore we
have equivalence:

Fun(C,D) ≃ Fun(C0,D)×Fun(C0
/X ,D) Fun(C0,▷

/X ,D)

The comma object in question can also be represented as:

M ≃ Fun(C0,D)×Fun(C0
/X ,D) Fun(C0

/X ⋄∆
0,D)

By HTT proposition 4.2.1.2., we justify our claim.
Now we can do induction on the cardinality of the isomorphic-classes of

objects in C. We have the following diagram:

ind - Fun(C0,D) ind - Fun(C0
/X ,D) ind -D

Fun(C0, ind -D) Fun(C0
/X , ind -D) ind -D

f

By our previous discussion, the inductive assumption, lemma 1.1.9 and the-
orem 3.0.3 , we only need to show the middle vertical functor f is fully-
faithful. Using HTT proposition 5.3.5.11., it is enough to show the essential
image of the following inclusion consists of compact objects:

Fun(C0
/X ,D)→ Fun(C0

/X , ind -D)

The point is, N(C0
/X) is a finite simplicial set, and hence the mapping space

between two functors in Fun(C0
/X , ind -D) is a canonical finite limit of map-

ping spaces between the values of each functor. Using the fact that filtered
colimits commute with finite limits, we conclude our proof.
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