Comma Categories and Filtered Categories

Kang Rongji

September 27, 2021

This article is an effort to generalize the corresponding parts in Kashiwara-Schapira's book *Categories and Sheaves*, in which they consider the case of 1-categories. Besides that, the main reference is Lurie's *Higher Topos Theory*, abbreviated as HTT. We will always refer to the version on his personal website.

Contents

1 The Comma Construction of *∞***-Categories**

1.1 Comma Categories

Given a functor $f : \mathcal{C} \to \mathcal{D}$ between ∞ -categories and an object $d \in \mathcal{D}$, we will write $\mathcal{C}_{/d}$ for $\mathcal{C} \times_{\mathcal{D}} \mathcal{D}_{/d}$. We write S for the ∞ -category of spaces.

Given any simplicial set *K*, we will write the composition $K \simeq K \times \{0\} \rightarrow$ $K \times \Delta^1$ as *i*₀ and we can define *i*₁ in a similar way.

Definition 1.1.1. *Given a diagram of simplicial set:*

$$
K' \stackrel{p}{\longrightarrow} K \stackrel{q}{\longleftarrow} K''
$$

The comma object $M(p,q)$ *is the simplicial set with n*-simplexes as the fol*lowing diagrams:*

$$
\Delta^n \xrightarrow{i_0} \Delta^n \times \Delta^1 \xleftarrow{i_1} \Delta^n
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
K' \xrightarrow{p} K \xleftarrow{q} K''
$$

Remark 1.1.2. *We have two natural maps and a simplicial homotopy:*

The comma object is some kind of so-called lax 2-limit. Many important constructions in (∞) category theory are special cases of comma object and let me exhibit an incomplete list:

$$
e^{c/} \simeq M(\Delta^0 \xrightarrow{c} e \xleftarrow{\text{id}_e} e)
$$

$$
e^{/c} \simeq M(e \xrightarrow{\text{id}_e} e \xleftarrow{c} \Delta^0)
$$

$$
e^{d/} \simeq M(\Delta^0 \xrightarrow{d} \mathcal{D} \xleftarrow{f} e)
$$

$$
e^{/d} \simeq M(e \xrightarrow{f} \mathcal{D} \xleftarrow{d} \Delta^0)
$$

$$
\text{map}_e(x, y) \simeq M(\Delta^0 \xrightarrow{x} e \xleftarrow{y} \Delta^0)
$$

$$
e^{\Delta^1} \simeq M(e \xrightarrow{\text{id}_e} e \xleftarrow{\text{id}_e} e)
$$

$$
e \times \mathcal{D} \simeq M(e \rightarrow \Delta^0 \leftarrow \mathcal{D})
$$

They are actually isomorphic as simplicial sets.

Lemma 1.1.3. *If K is* ∞ *-category, the functor* $(p', q') : M(p, q) \to K' \times K''$ *is inner fibration.*

Proof. To fill in a diagram $\Lambda_i^n \to M(p, q)$ $(1 \leq i \leq n)$:

$$
\Lambda_i^n \xrightarrow{i_0} \Lambda_i^n \times \Delta^1 \xleftarrow{i_1} \Lambda_i^n
$$

\n
$$
\downarrow f'
$$

\n
$$
K' \xrightarrow{p} K \xleftarrow{q} K''
$$

We can fill in f' and f'' first (or use the given filling-in), then f .

Corollary 1.1.4. *If* K *,* K' *and* K'' *are* ∞ *-categories, the comma object* $M(p,q)$ *is* ∞ -category and the functors p' , q' are both inner fibrations.

The next two lemmas are immediate consequences of the definition.

Lemma 1.1.5. *Given a comma object and two adjacent pullback squares:*

The canonical map is an isomorphism between simplicial sets:

 $f: M' \times_{\mathcal{M}(p,q)} M'' \to \mathcal{M}(pr,qs)$

Lemma 1.1.6. *Given a comma object and a pullback square:*

We have a canonical pullback of simplicial sets:

$$
M(p, q) \longrightarrow M(sp, sq)
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
M(tp, tq) \longrightarrow M(fp, fq)
$$

 \Box

Corollary 1.1.7. *Given a homotopy pullback of* ∞ -categories:

$$
\begin{array}{ccc}\n\mathfrak{X} & \xrightarrow{a} & \mathfrak{Y} \\
\downarrow b & \searrow f & \downarrow c \\
\mathfrak{Z} & \xrightarrow{d} & \mathcal{W}\n\end{array}
$$

We have a homotopy pullback of mapping spaces:

$$
\operatorname{map}_{\mathcal{X}}(x, y) \longrightarrow \operatorname{map}_{\mathcal{Y}}(a(x), a(y))
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\operatorname{map}_{\mathcal{Z}}(b(x), b(y)) \longrightarrow \operatorname{map}_{\mathcal{W}}(f(x), f(y))
$$

Proof. Assume that our homotopy pullack of *∞*-categories is given by a pullback of simplicial sets and maps *c*, *d* are both categorical fibrations. Using the previous lemma and equivalence map $_{\mathfrak{X}}(x, y) \simeq M(\Delta^0 \stackrel{x}{\to} \mathfrak{X} \stackrel{y}{\leftarrow}$ Δ^{0}), we have a pullback of mapping spaces (as simplicial sets) which is automatically homotopy pullback since the maps between mapping spaces are Kan fibrations (using the fact that *c*, *d* are categorical fibrations). \Box

From now on, we will only take comma objects of *∞*-categories, and it is safe since *∞*-categories are closed under taking comma objects.

There are two alternative descriptions of M($\mathcal{C} \stackrel{p}{\to} \mathcal{D} \stackrel{q}{\leftarrow} \mathcal{E}$). One is the following pullback:

$$
M(p, q) \longrightarrow \mathcal{D}^{\Delta^1}
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\mathcal{C} \times \mathcal{E} \xrightarrow{(p,q)} \mathcal{D} \times \mathcal{D}
$$

The other one is the limit of the following zig-zag:

$$
\mathbf{C} \xrightarrow{p} \mathbf{D} \leftarrow \mathbf{D}^{\Delta^1} \rightarrow \mathbf{D} \xleftarrow{q} \mathbf{E}
$$

All three descriptions give isomorphic simplicial sets. However, the previous two are homotopy limits as well. It is because the last two forms of limits are equivalent in any ∞ -categories, and the functor $\mathcal{D}^{\Delta^1} \to \mathcal{D} \times \mathcal{D}$ is categorical fibration by HTT corollary 2.4.6.5. As a corollary, if the middle *K* is ∞ category, the comma object is invariant under categorical equivalence.

Remark 1.1.8. *We can deduce from the pullback description and corollary 1.1.7 that, the mapping space in comma category can be represented as homotopy pullback (between objects* $A = (x, a, y)$ *and* $A' = (x', a', y')$):

$$
\operatorname{map}_{\mathrm{M}(p,q)}(A, A') \longrightarrow \operatorname{map}_{\mathcal{C}}(x, x')
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\operatorname{map}_{\mathcal{E}}(y, y') \longrightarrow \operatorname{map}_{\mathcal{D}}(p(x), q(y'))
$$

Lemma 1.1.9. *Given a diagram of* ∞ *-categories:*

$$
\begin{array}{ccc}\nC & \xrightarrow{p} & \mathcal{D} & \xleftarrow{q} & \mathcal{E} \\
f' & & f & f'' \\
C' & \xrightarrow{p'} & \mathcal{D}' & \xleftarrow{q'} & \mathcal{E}'\n\end{array}
$$

It induces functor between comma categories:

$$
F: \mathcal{M}(p,q) \to \mathcal{M}(p',q')
$$

We have:

- *1. If f ′ , f and f ′′ are fully-faithful, F is fully-faithful.*
- *2. If f ′ , f ′′ are equivalences and f is fully-faithful, F is equivalence.*

Proof. Given objects $A = (x, a, y)$ and $A = (x', a', y') \in M(p, q)$, the mapping space between them can be represented as fiber product by the previous remark:

$$
\operatorname{map}_{\mathrm{M}(p,q)}(A, A') \simeq \operatorname{map}_{\mathcal{C}}(x, x') \times_{\operatorname{map}_{\mathcal{D}}(p(x), q'(y'))} \operatorname{map}_{\mathcal{E}}(y, y')
$$

Using this formula is enough to show (1). The claim (2) follows from the fact that, any morphism in \mathcal{D}' between objects in the essential image of \mathcal{C}' and \mathcal{E}' is equivalent to a morphism in the essential image of \mathcal{D} . \Box

1.2 Lax Fibers of Comma Categories

Theorem 1.2.1. *Given two adjacent comma categories of ∞-categories:*

The following canonical functor admits a right adjoint:

$$
f: \mathcal{M}(p', r) \to \mathcal{M}(p, qr)
$$

Proof. For the most convenience, we will write M and M' for $M(p', r)$ and $M(p,qr)$ respectively. The object in M can be seen as tuple (x, a, y, b, z) such that $x \in K'$, $y \in K''$, $z \in L$ and $a : p(x) \to q(y)$, $b : y \to r(z)$. Similarly, the object in M' can be seen as tuple (x', a', z') such that $x' \in K'$, $z' \in L$ and $a' : p(x') \to qr(z')$. The definition of *f* is roughly as taking (x, a, y, b, z) to $(x, q(b) \circ a, z)$. Write *g* for the proposed right adjoint of *f*. The definition of g is roughly as taking (x', a', z') to $(x', a', r(z'), id_{r(z')}, z')$. There is a natural transformation id $\rightarrow gf$ that its value at (x, a, y, b, z) is defined by the diagram:

$$
\begin{array}{ccc}\nx & p(x) \xrightarrow{a} q(y) & y \xrightarrow{b} r(z) & z \\
\downarrow id & \downarrow id & \downarrow q(b) & \downarrow b & \downarrow id \\
x & p(x) \xrightarrow{q(b)\circ a} qr(z) & r(z) \xrightarrow{id} r(z) & z\n\end{array}
$$

We are left to check it is a unit transformation in the sense of HTT definition 5.2.2.7., that is, to show the following composition is an equivalence in the homotopy category of spaces (we write C for (x, a, y, b, z) and D for (x', a', z') :

$$
\operatorname{map}_{M'}(f(C), D) \to \operatorname{map}_{M}(gf(C), g(D)) \to \operatorname{map}_{M}(C, g(D))
$$

Basically, it is because both sides are equivalent to a fiber product:

 $\text{map}_{K'}(x, x') \times_{\text{map}_{K}(p(x), qr(z'))} \text{map}_{L}(z, z')$

 \Box

Remark 1.2.2. *If we combine the squares in the other direction:*

We still have a comparison functor:

$$
f: \mathcal{M}(r, q') \to \mathcal{M}(pr, q)
$$

This time, it admits a left adjoint.

Corollary 1.2.3. *Given a comma category of ∞-categories:*

If q is cofinal, q ′ is also cofinal.

Proof. Given any object $x \in K'$, the previous remark guarantees the natural functor $f: M(p,q)_{x} \to K''_{p(x)}$ admits a left adjoint and therefore it is weak equivalence. We can use HTT theorem 4.1.3.1. to conclude the proof.

Given a diagram of *∞*-categories:

$$
\begin{array}{ccc}\nC & \xrightarrow{p} & \mathcal{D} & \xleftarrow{q} & \mathcal{E} \\
f' & & f' & f'' \\
C' & \xrightarrow{p'} & \mathcal{D}' & \xleftarrow{q'} & \mathcal{E}'\n\end{array}
$$

It induces functor between comma categories:

$$
F: \mathcal{M}(p, q) \to \mathcal{M}(p', q')
$$

Theorem 1.2.4. *Given an object* $D = (x, a, y) \in M(p', q')$ *, we have a categorical equivalence:*

$$
M(p,q)_{D/} \simeq M(\mathcal{C}_{x/} \to \mathcal{D}_{p'(x)/} \leftarrow \mathcal{E}_{y/})
$$

Proof. We have a pullback square:

$$
(\mathcal{D}^{\Delta^1})_{a/} \longrightarrow (\mathcal{D}_{p'(x)/})^{\Delta^1}
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\mathcal{D}_{a/} \longrightarrow \mathcal{D}_{p'(x)/}
$$

It is because of a dual decomposition of simplicial sets:

$$
\Delta^1 \times \Delta^{n+1} \simeq \Delta^0 \star (\Delta^1 \times \Delta^n) \coprod_{\Delta^0 \star \Delta^n} \Delta^1 \star \Delta^n
$$

The special case of $n = 1$ is drawn as follows:

We have the following diagram:

Notice that the restriction r is trivial Kan fibration. The precise definition of the functor $\mathcal{E}_{y/2} \to \mathcal{D}_{p'(x)/2}$ appeared in this proposition should be the consecutive composition of $\mathcal{E}_{y/} \to \mathcal{D}_{q'(y)/}$, any section of *r* and $\mathcal{D}_{a/} \to$ $\mathcal{D}_{p'(x)}/$. The limit of the first row is $M(p,q)_{D/}$ by the very definition, and it is equivalent to the limit of the bottom border line because the middle square is pullback. And the last limit is categorical equivalent to $M(\mathcal{C}_{x/} \to \mathcal{D}_{x'(x)/} \leftarrow \mathcal{E}_{x'})$ since r is trivial Kan fibration. $\mathcal{D}_{p'(x)}/ \leftarrow \mathcal{E}_{y/}$ since *r* is trivial Kan fibration.

Remark 1.2.5. *We have a dual version of the previous equivalence:*

$$
M(p,q)_{/D} \simeq M(\mathcal{C}_{/x} \to \mathcal{D}_{/q'(y)} \leftarrow \mathcal{E}_{/y})
$$

2 Filtered *∞***-Categories**

2.1 Cofinality and Filteredness

Lemma 2.1.1. *Given a filtered diagram of spaces* $f : \mathcal{J} \to \mathcal{S}$ *, the following conditions are equivalent:*

- 1. Its colimit $\lim_{\alpha \in \mathcal{J}} f(\alpha)$ is contractible;
- *2. It satisfies the following two properties:*
	- *(a) Given any* $\alpha \in \mathcal{J}$, *there exists morphism* $\alpha \to \alpha'$ *such that* $f(\alpha')$ *is non-empty;*
	- *(b) Given any* $\alpha \in \mathcal{J}$ *and map* $S^n \to f(\alpha)$ *, there exists morphism* $\alpha \to \alpha'$ *such that the composition* $S^n \to f(\alpha) \to f(\alpha')$ *is nullhomotopic.*

Proof. We can consider the filtered systems of sets $\pi_0 f(-) : \mathcal{J} \to \mathbf{Set}$ and $\pi_0 \operatorname{map}_S(S^n, f(-)) : \mathcal{J}_{\alpha} \to \mathbf{Set}$. Since $*$ and S^n are compact objects of S and π_0 commutes with filtered limits, we can reduce the problem to properties of filtered colimits of sets.

1 \Rightarrow 2: The claim follows from the fact that \lim_{Δ} ^{*α*}→*α*^{*'*}∈*β*_{*α*}/^{*π*₀</sub> map_S(*Sⁿ*, *f*(*α[']))* ≃} *[∗]* and lim*−→α∈*^J *π*0*f*(*α*) *≃ ∗*.

2 ⇒ 1: The assumption implies that $\lim_{\alpha \to \alpha' \in \mathcal{J}_{\alpha'}} \pi_0 \operatorname{map}_S(S^n, f(\alpha'))$ ≃ *∗* and $\lim_{x \to a} f(a) \simeq *$. Now use the criterion that a space *X* ∈ S is contractible if and only if $\pi_0 X$ is non-empty and π_0 map_S $(S^n, X) \simeq *$.

Lemma 2.1.2. *Given an* ∞ *-category* C *such that for any* $y \in C$ *,* C_{y} *is filtered,* \mathcal{C} *itself is filtered if and only if for any objects* $x, y \in \mathcal{J}$, the following *filtered colimit is contractible:*

$$
\varinjlim\nolimits_{y\to y'\in{\mathcal{C}}_{y/}}\text{map}_{\mathcal{J}}(x,y')\simeq\ast
$$

Proof. The previous lemma shows that the assumptions in the criterion for filteredness given by HTT proposition 5.3.1.15. (together with HTT definition 5.3.1.1.) is equivalent our assumption. \Box

We write *|K|* for the geometric realization of simplicial set *K*.

Lemma 2.1.3. *Given a functor* $f : \mathcal{J} \to \mathcal{C}$ *between* ∞ *-categories and object* $x \in \mathcal{C}$ *, we have an equivalence:*

$$
\underline{\lim}_{\alpha \in \mathcal{J}} \operatorname{map}_{\mathcal{C}}(x, f(\alpha)) \simeq |\mathcal{J}_{x/}|
$$

Proof. The geometric realization of \mathcal{J}_{x} is equivalent to the homotopy colimit of the diagram $p : \mathcal{J} \to \mathcal{S}$ which is given by applying (reverse) Grothendieck construction to the left fibration $\mathcal{J}_{x} \rightarrow \mathcal{J}$ (cf. HTT corollary 3.3.4.6.). The left fibration $\mathcal{J}_{x} \to \mathcal{J}$ is pullback of $\mathcal{C}_{x} \to \mathcal{C}$ along f, so by Yoneda lemma, we have $p(-) \simeq \text{map}_{\mathcal{C}}(x, f(-))$. \Box

Theorem 2.1.4. *Given a functor* $f : \mathcal{J} \to \mathcal{C}$ *between* ∞ *-categories such that* J *is filtered, the following conditions are equivalent:*

- *1. f is cofinal;*
- 2. For any $x \in \mathcal{C}$, \mathcal{J}_{x} is filtered;
- *3. The following properties hold:*
	- *(a) Given any* $x \in \mathcal{C}$ *, there exists morphism* $x \to f(j)$;
	- *(b) Given any* $x \in \mathcal{C}$, $j \in \mathcal{J}$ *and map* $S^n \to \text{map}_{\mathcal{C}}(x, f(j))$ *, there exists* $morphism j \to j' such that the composition $S^n \to \text{map}_{\mathcal{C}}(x, f(j)) \to$$ $\text{map}_{\mathcal{C}}(x, f(j'))$ *is null-homotopic.*

Proof. $2 \Rightarrow 1$: That \mathcal{J}_{x} is filtered implies it is contractible (cf. HTT lemma 5.3.1.20.), and we can use the criterion HTT theorem 4.1.3.1.

1 \Leftrightarrow 3: We have $\lim_{\delta \to 0} \text{map}_{\mathcal{C}}(x, f(-)) \simeq |\mathcal{J}_{x/}|$ by the previous lemma, and the claim follows from lemma 2.1.1.

 $3 \Rightarrow 2$: The mapping space in \mathcal{J}_{x} between $A: x \to f(j)$ and $A': x \to f(j)$ $f(j')$ can be represented by homotopy pullback:

We can combine corollary 1.1.7 and HTT proposition 2.4.4.3. (2) to prove this fact. Back to the track, our strategy is to apply lemma 2.1.2. Notice that we have restriction functor $(\partial_{x}/\partial_{A'}) \rightarrow \partial_{j'}/$ that is a trivial Kan fibration. Therefore we have to show [that](#page-3-0) (A'') is the composition $x \to f(j') \to f(j'')$:

$$
\underline{\lim}_{j'\to j''\in\mathcal{J}_{j'}/}\operatorname{map}_{\mathcal{J}_{x/}}(A, A'')\simeq *
$$

Using the above pullback square and the fact that filtered colimits commute with pullbacks in S, it is enough to show $\lim_{j' \to j'' \in \mathcal{J}_{j'}} \text{map}_{\mathcal{J}}(j, j'') \simeq *$ and $\lim_{j' \to j'' \in \mathcal{J}_{j'}} \text{map}_{\mathcal{C}}(x, f(j'')) \simeq *$. We can use the previous lemma to compute these filtered colimits, provided the facts that $\partial_{j'} \rightarrow \partial$ is cofinal (since $(\partial_{j'}/j'')$ \approx $\partial_{j''}/$ and hence filtered) and the composition of two cofinal functors $\mathcal{J}_{j'}/\rightarrow \mathcal{J}\rightarrow \mathcal{C}$ is cofinal (cf. HTT proposition 4.1.1.3. (2)). \Box

Remark 2.1.5. *By lemma 2.1.7 below, under the assumptions of the previous theorem,* C *has to be filtered.*

The following theorem concerns some natural cofinality that arises from filtered *∞*-categories and co[final f](#page-10-0)unctors between them.

Theorem 2.1.6. *Given a diagram of filtered ∞-categories with cofinal functors p and q:*

$$
\mathcal{J} \xrightarrow{p} \mathcal{J}' \xrightarrow{q} \mathcal{J}''
$$

The following propositions hold:

- *1. For any* $j' \in \mathcal{J}'$, $\mathcal{J}_{j'} \rightarrow \mathcal{J}$ *is cofinal;*
- 2. For any $j \in \mathcal{J}, \mathcal{J}_{j} \rightarrow \mathcal{J}_{p(j)}$ is cofinal;
- 3. For any $j'' \in \mathcal{J}'$, $\mathcal{J}_{j''}/ \rightarrow \mathcal{J}'_{j''}/$ is cofinal;
- 4. For any morhphism $f : j'' \to q(j') \in \mathcal{J}'$, the induced functor $\mathcal{J}_{j'} \to$ ∂_j ^{*''}*/ *is cofinal.*</sup>

Proof. (1) Given $j \in \mathcal{J}$, we have trivial Kan fibration $(\mathcal{J}_{j'}/j)_{j'} \to \mathcal{J}_{j'}$ and therefore $(\partial_{j'}/j)_{j'}$ is contractible.

(2) This is a special case of (4).

(3) Given $A: j'' \to q(j') \in \mathcal{J}'_{j''/},$ we have trivial Kan fibration $(\mathcal{J}_{j''/})_{A/} \to$ $\mathcal{J}_{j'}/$ and by the cofinality of *p* we conclude that $(\mathcal{J}_{j''/})_{A/}$ is contractible.

(4) The morphism *f* can be seen as object of $\mathcal{J}'_{j''/}$. By (3), the functor $\partial_j \gamma_j \to \partial'_{j''j}$ is cofinal and therefore $(\partial_j \gamma_j)_f$ is filtered by the previous theorem. We have trivial Kan fibration $r : (\mathcal{J}_{j''/})_{f/} \to \mathcal{J}_{j'}/$ and by (1), cofinal functor r' : $(\partial_j r_j)_f / \partial_j \rightarrow \partial_j r_j$. The functor appeared in claim (4) is defined by taking any section of *r* and composing it with *r ′* , and the result is cofinal.

We conclude this section by two criteria for filteredness.

Lemma 2.1.7. *Given* a functor $f : \mathcal{J} \to \mathcal{J}'$ between ∞ -categories, if \mathcal{J} is *filtered and f is cofinal,* J *′ is also filtered.*

Proof. There is a characterization of filtered ∞-categories that they are precisely those *∞*-categories by which colimits (of spaces) are indexed could commutes with finite limits (of spaces) (cf. HTT proposition 5.3.3.3.). Since cofinal functor keeps colimits invariant, if $\mathcal J$ has this property, $\mathcal J'$ also has this property. \Box

Lemma 2.1.8. *Given* a functor $f : \mathcal{J} \to \mathcal{J}'$ between ∞ -categories, if \mathcal{J}' is *filtered and f is right exact (cf. HTT definition 5.3.2.1.),* J *is also filtered.*

Proof. The pullback of identity $\mathrm{id}_{\mathcal{J}'} : \mathcal{J}' \to \mathcal{J}'$ along f is the identity $\mathrm{id}_{\mathcal{J}}$: $\mathcal{J} \to \mathcal{J}$. By the definition of right exact functors, since \mathcal{J}' is filtered, \mathcal{J} is also filtered. \Box

2.2 Comma Category of Filtered Categories

Lemma 2.2.1. *Given a diagram of* ∞ -categories such that \mathcal{C} is contractible *and q is cofinal:*

$$
\mathbf{C} \xrightarrow{p} \mathbf{D} \xleftarrow{q} \mathbf{E}
$$

Then the comma category M(*p, q*) *is contractible.*

Proof. By corollary 1.2.3, there exists cofinal functor $M(p,q) \rightarrow \mathcal{C}$, and cofinal functors are weak equivalences by HTT proposition 4.1.1.3. (3). \Box

Theorem 2.2.2. *Gi[ven a](#page-6-0) diagram of* ∞ -categories:

$$
\begin{array}{ccc}\n\mathcal{C} & \xrightarrow{p} & \mathcal{D} & \xleftarrow{q} & \mathcal{J} \\
f' & & f' & & f'' \\
\mathcal{C}' & \xrightarrow{p'} & \mathcal{D}' & \xleftarrow{q'} & \mathcal{J}'\n\end{array}
$$

If it satisfies the following conditions:

- *1.* J *and* J *′ are filtered;*
- *2. q, q ′ , f ′ and f ′′ are cofinal.*

The induced functor between comma categories is cofinal:

$$
F: \mathcal{M}(p,q) \to \mathcal{M}(p',q')
$$

Notice that under these assumptions, \mathcal{D} and \mathcal{D}' are both filtered by lemma 2.1.7, and *f* is cofinal by HTT proposition 4.1.1.3. (2).

Proof. Our strategy is to use theorem 1.2.4 to represent $M(p,q)_{D}/(D =$ (x, a, y) as comma category $M(\mathcal{C}_{x} \to \mathcal{D}_{p'(x)} \to \mathcal{J}_{y'})$ and then the previous lemma [to sh](#page-10-0)ow its contractibility. Since f' is cofinal, $\mathcal{C}_{x/}$ is contractible. We are left to show that $\mathcal{J}_{y'} \to \mathcal{D}_{p'(x)'}$ is [cofina](#page-6-1)l. By definition, this functor factors as ∂_y \rightarrow $\partial_{q'}(y)$ \rightarrow $\mathcal{D}_{q'(y)}$ \rightarrow $\mathcal{D}_{p'(x)}$ and hence it is cofinal as being composition of cofinal functors by theorem $2.1.6$ (2), (3) and (4). \Box

Theorem 2.2.3. Given a comma category of ∞ -categories such that \mathcal{J}' , \mathcal{J}'' *are filtered and q is cofinal:*

The following propositions hold:

- *1.* M(*p, q*) *is filtered;*
- 2. The functors q', p' and (q', p') from $M(p, q)$ to \mathcal{J}' , \mathcal{J}'' and $\mathcal{J}' \times \mathcal{J}''$ are *cofinal.*

Proof. (1) By lemma 2.1.8, it is enough to show that q' is right exact, namely to prove that for any $j' \in \mathcal{J}'$, $M(p,q)_{/j'}$ is filtered. Using the following diagram:

$$
\begin{array}{ccc}\n\mathcal{J}' & \xrightarrow{p} & \mathcal{J} \leftarrow^q & \mathcal{J}'' \\
\downarrow^{\mathrm{id}_{\mathcal{J}'}} & & \downarrow & \downarrow \\
\mathcal{J}' & \xrightarrow{\Delta^0} & \xrightarrow{\Delta^0} & \Delta^0\n\end{array}
$$

Remark 1.2.5 shows that $M(p,q)_{/j'} \simeq M(\mathcal{J}'_{/j'} \stackrel{\bar{p}}{\rightarrow} \mathcal{J} \stackrel{q}{\leftarrow} \mathcal{J}'')$ (\bar{p} is the composition $\mathcal{J}'_{j'} \to \mathcal{J}' \xrightarrow{p} \mathcal{J}$. Then we use the following diagram:

$$
\begin{array}{c}\Delta^0\xrightarrow{p(j')}\mathcal{J}\xleftarrow{q}\mathcal{J}''\\\mathrm{id}_{j'}\Big\downarrow\qquad \mathrm{id}_{\mathcal{J}}\Big\downarrow\qquad \mathrm{id}_{\mathcal{J}''}\Big\downarrow\\\mathcal{J}_{/j'}'\xrightarrow[\overline{p}\right. \rightarrow \mathcal{J}\xleftarrow{q}\mathcal{J}''\end{array}
$$

Notice that $\mathrm{id}_{j'}$ is terminal object of $\mathcal{J}'_{j'}$, so the left vertical map is cofinal. We can apply the previous theorem and it follows that the induced functor $\mathcal{J}''_{p(j')}/ \rightarrow M(\bar{p}, q) \simeq M(p,q)_{j'}$ is cofinal. Theorem 2.1.4 (2) implies that $\partial_{p(j')}^{j'}$ is filtered. Then lemma 2.1.7 shows $M(p,q)_{/j'}$ is filtered.

(2) The following are equivalences:

$$
\mathcal{J}' \simeq M(\mathcal{J}' \to \Delta^0 \leftarrow \Delta^0)
$$

$$
\mathcal{J}'' \simeq M(\Delta^0 \to \Delta^0 \leftarrow \mathcal{J}'')
$$

$$
\mathcal{J}' \times \mathcal{J}'' \simeq M(\mathcal{J}' \to \Delta^0 \leftarrow \mathcal{J}'')
$$

We can use remark 1.2.5 and these equivalences to represent $M(p,q)_{x/2}$ (for $x \in \mathcal{J}'$, \mathcal{J}'' or $\mathcal{J}' \times \mathcal{J}''$) and use lemma 2.2.1 to show its contractibility.

2.3 Lax Limit of Filtered *∞***-Categories**

This section begins with an introduction to a special kind of diagrams.

Lemma 2.3.1. *For simplicial set K, the following properties are equivalent:*

- 1. It is categorically equivalent to a minimal ∞ -category, which has only *finitely many non-degenerate simplexes.*
- *2. It is categorically equivalent to a finite minimal* 1*-category that the length of composable non-identity morphisms has finite upper bound.*

Proof. (2) \Rightarrow (1) Using the description of the non-degenerate simplexes in nerve of 1-category.

(1) \Rightarrow (2) Assume that *K* \approx C and C is a minimal ∞-category, we only need to show that C is actually an 1-category, and then we can use the description of the non-degenerate simplexes in nerve of 1-category again to conclude the proof.

Notice that, if C satisfies (1) then for any objects $x, y \in C$, $\text{map}_{C}(x, y)$ also satisfies (1). To prove this claim, we use the model $\text{map}_{\mathcal{C}}^{\mathbf{R}}(x, y)$ (cf. discussion before HTT proposition 1.2.2.3.). A simplex $\Delta^n \to \text{map}^{\mathbf{R}}_{\mathcal{C}}(x, y)$ is a simplex $\Delta^{n+1} \to \mathcal{C}$ satisfying some properties and we can see that if the latter is degenerate, the former is also degenerate (except when $n = 0$ and $x = y$, there is another possibility that the 0-simplex represents id_{*x*}). This is enough to show our claim.

If C is a Kan complex, it has to be a finite set. To show this, given any object $x \in \mathcal{C}$, if $\pi_1(X, x)$ is nontrivial, we can take some $\gamma : \Delta^1 \to \mathcal{C}$ to represent a non-trivial loop. We have a categorical equivalence:

$$
\text{Spine}_{n} \simeq \Delta^{\{0,1\}} \coprod_{\Delta^{\{1\}}} \Delta^{\{1,2\}} \coprod_{\Delta^{\{2\}}} \cdots \coprod_{\Delta^{n-1}} \Delta^{\{n-1,n\}} \to \Delta^n
$$

Take the map Spine_n \rightarrow C which maps each $\Delta^{\{i,i+1\}}$ to γ , and then exdend it to Δ^n . The resulting *n*-simplex cannot be degenerate and hence it contradicts our assumption. We apply this observation to Ω^n C and we find out that all higher homotopy groups of C are trivial. Finally, for the original C , the previous discussion applied to $\text{map}_{\mathcal{C}}(x, y)$ show it is a finite set. \Box

Definition 2.3.2. *A simplicial set K is called very small if it satisfies the above two (equivalent) properties.*

Let $p: \mathfrak{X} \to K$ be a cocartesian fibration of ∞ -categories, we will write Sect_p for the *∞*-category $\text{Map}_{/K}(id, p)$ of sections of *p*. Our main result in the section is the following:

Theorem 2.3.3. Let $p: \mathcal{X} \to K$ be a cocartesian fibration such that K is *very small and all fibers of p are filtered. Then for any object* $i \in K$ *, the evaluation functor* $\text{Sect}_{p} \to p^{-1}(i)$ *is cofinal. In particular,* Sect_{p} *is filtered and hence non-empty.*

Before the proof, we should establish some lemmas. Given a small simplicial set *K*, a cocartesian fibration $p: \mathcal{X} \to K^{\triangleright}$ over its right cone, let us call the cone point *X* and the base change of p to K will be named p^0 . We have the following square and natural transformation $\eta : t i^* \to d j^*$:

Lemma 2.3.4. *The previous square induces equivalence:*

$$
Sect_{p} \simeq M(Sect_{p^0} \to Fun(K, p^{-1}(X)) \leftarrow p^{-1}(X))
$$

The functor i^* is the restriction of sections to K, j^* the restriction to cone point *X* and *d* the diagonal functor which sends an object to the constant diagram. The functor *t* is defined by cocartesion lifting by solving the following extension problem (with the requirement that for each $i \in K$, the image of $i \times \Delta^1$ in X should be *p*-cocartesian) and then restricting the diagonal map to $K \times \{1\}$.

$$
K \times \{0\} \xrightarrow{\rightarrow} \mathcal{X}
$$

$$
\downarrow \qquad \qquad \downarrow p
$$

$$
K \times \Delta^1 \xrightarrow{\rightarrow} K^{\triangleright}
$$

The natural transformation is defined similarly by the following extension problem:

$$
K \times \Lambda_0^2 \xrightarrow{s} \mathcal{X}
$$

$$
\downarrow \qquad \qquad \downarrow p
$$

$$
K \times \Delta^2 \xrightarrow{q} K^{\triangleright}
$$

Theorem 2.3.5. *Let* $p : \mathcal{X} \to K$ *be a cocartesian fibration such that* K *is very small and all fibers of p are filtered. Then we have:*

- 1. The ∞ -category Sect_{p} *is filtered and hence non-empty;*
- 2. For any object $i \in K$, the evaluation functor $\text{Sect}_{p} \to p^{-1}(i)$ is cofinal.

Proof. We can assume that *K* is equivalent to the nerve $N(\mathcal{C})$ of some minimal 1-category. By definition we can find a maximal object of C , namely an object X such that admits no morphism towards other object. Let \mathcal{C}^0 be the full subcategory consists of objects other than X , and $\mathcal{C}_{/X}^0$ the over-category $\mathcal{C}^0 \times_{\mathcal{C}} \mathcal{C}_{/X}$. We have a natural simplicial homotopy:

Let us denote the pullback of *p* along *i* and *qi* as p^0 and p_X^0 . We have a natural equivalence induced by this simplicial homotopy:

$$
Sect_{p} \simeq M(Sect_{p^{0}} \to Sect_{p^{0}_{X}} \to Fun(\mathcal{C}^{0}_{X}, p^{-1}(X)) \leftarrow p^{-1}(X))
$$

Let us denote the right-hand-side as *M*. The reason for our claim is, we have pushout of simplicial set:

This is also a homotopy pushout in Joyal model structure. Therefore we have equivalence:

$$
\mathrm{Fun}(\mathcal{C}, \mathcal{D}) \simeq \mathrm{Fun}(\mathcal{C}^0, \mathcal{D}) \times_{\mathrm{Fun}(\mathcal{C}^0_{/X}, \mathcal{D})} \mathrm{Fun}((\mathcal{C}^0_{/X})^{\triangleright}, \mathcal{D})
$$

The comma object in question can also be represented as:

$$
M \simeq \operatorname{Fun}(\mathcal{C}^0, \mathcal{D}) \times_{\operatorname{Fun}(\mathcal{C}^0_{/X}, \mathcal{D})} \operatorname{Fun}(\mathcal{C}^0_{/X} \diamond \Delta^0, \mathcal{D})
$$

By HTT proposition 4.2.1.2., we justify our claim.

Now we can do induction on the cardinality of the isomorphic-classes of objects in C. We have the following diagram:

$$
\text{ind-}\text{Fun}(\mathcal{C}^0, \mathcal{D}) \longrightarrow \text{ind-}\text{Fun}(\mathcal{C}^0_{/X}, \mathcal{D}) \longleftarrow \text{ind-}\mathcal{D}
$$
\n
$$
\downarrow \qquad \qquad f \downarrow \qquad \qquad \downarrow
$$
\n
$$
\text{Fun}(\mathcal{C}^0, \text{ind-}\mathcal{D}) \longrightarrow \text{Fun}(\mathcal{C}^0_{/X}, \text{ind-}\mathcal{D}) \longleftarrow \text{ind-}\mathcal{D}
$$

By our previous discussion, the inductive assumption, lemma 1.1.9 and theorem 3.0.3 , we only need to show the middle vertical functor *f* is fullyfaithful. Using HTT proposition 5.3.5.11., it is enough to show the essential image of the following inclusion consists of compact objects:

$$
\operatorname{Fun}(\mathcal{C}^0_{/X}, \mathcal{D}) \to \operatorname{Fun}(\mathcal{C}^0_{/X}, \text{ind-}\mathcal{D})
$$

The point is, $N(\mathcal{C}_{/X}^0)$ is a finite simplicial set, and hence the mapping space between two functors in $\text{Fun}(\mathcal{C}_{/X}^0, \text{ind } \text{-} \mathcal{D})$ is a canonical finite limit of mapping spaces between the values of each functor. Using the fact that filtered colimits commute with finite limits, we conclude our proof. \Box

3 Applications to Ind-Objects

In the last section of this article, we apply the results established in previous sections to ind -objects.

Lemma 3.0.1. *Given a filtered diagram* $p : \mathcal{J} \to \mathcal{C}$ *which represents* $X \in$ ind - C, the canonical functor $\tilde{p}: \mathcal{J} \to \mathcal{C}_{/X}$ is cofinal.

Proof. We will use lemma 2.1.3 to show cofinality. That means we have to prove that given any $A: Y \to X \in \mathcal{C}_{/X}$, we have:

$$
\underline{\lim}_{\alpha \in \mathcal{J}} \operatorname{map}_{\mathcal{C}_{/X}}(A, p(\alpha) \to X) \simeq *
$$

The mapping space in $\mathcal{C}_{/X}$ between $A: Y \to X$ and $A': Y' \to X$ can be represented as homotopy pullback:

Since *Y* is compact in ind - C, we have $\lim_{\Delta x \in \mathcal{J}} \text{map}_{\mathcal{C}}(Y, p(\alpha)) \simeq \text{map}_{\mathcal{C}}(Y, X)$, and the bottom map becomes equivalence after taking colimit, so its fiber is contractible. \Box

Theorem 3.0.2. *Given a morphism* $f: X \to X' \in \text{ind }$ -C *and two filtered diagrams* $p : \mathcal{J} \to \mathcal{C}$ *and* $q : \mathcal{J}' \to \mathcal{C}$ *that represents X and X*^{*'*} *respectively, there exists filtered* ∞ -*category* \mathcal{J}' , *cofinal maps* p' *and* q' *and natural trans* $for \textit{motion } pp' \rightarrow qq'$ that represents f :

Proof. We have a diagram such that \tilde{q} is cofinal by the previous lemma:

$$
\mathcal{J} \stackrel{\tilde{p}}{\longrightarrow} \mathfrak{C}_{/X} \stackrel{f_!}{\longrightarrow} \mathfrak{C}_{/X'} \stackrel{\tilde{q}}{\longleftarrow} \mathcal{J}'
$$

Then $M(f_!\tilde{p}, \tilde{q})$ is what we want by theorem 2.2.3.

Theorem 3.0.3. *Given a diagram of* ∞ -categories $K' \stackrel{p}{\rightarrow} K \stackrel{q}{\leftarrow} K''$, the *following canonical functor is an equivalence:*

$$
ind-M(K' \to K \leftarrow K'') \longrightarrow M(ind-(K' \to K \leftarrow K''))
$$

 \Box

Proof. Without loss of generality, we assume K' , K and K'' are ∞ -categories. Let us focus on the restriction first:

$$
M(K' \to K \leftarrow K'') \longrightarrow M(\text{ind}-(K' \to K \leftarrow K''))
$$

This functor is fully-faithful by definition, and we will prove that its image consists of compact objects. Given $(x, a, y) \in M(K' \to K \leftarrow K'')$ and $(x', a', y') \in M(\text{ind }-(K' \to K \leftarrow K''))$, the mapping space between them can be represented as fiber product (cf. remark 1.1.8):

$$
\operatorname{map}_{\operatorname{ind}-K'}(x, x') \times_{\operatorname{map}_{\operatorname{ind}-K}(p(x), q(y'))} \operatorname{map}_{\operatorname{ind}-K''}(y, y')
$$

Since ind - $K' \rightarrow \text{ind} \cdot K$ and ind - $K'' \rightarrow \text{ind} \cdot K$ [pre](#page-3-1)serve filtered colimits, the functor map_{ind - K'}(X , $-$) \times _{map_{ind - $K(p(X),q(-))$} map_{ind - K''} $(Y, -)$ preserves} filtered colimits. We finished our proof of compactness.

By HTT proposition 5.3.5.11., we are left to prove the canonical functor in our proposition is essentially surjective. Given $(x', a, y') \in M(\text{ind} - (K' \rightarrow$ $K \leftarrow K''$)) and represented *x'* and *y'* by $f : \mathcal{J} \rightarrow K'$ and $g : \mathcal{J}' \rightarrow K''$ respectively. We can apply theorem 3.0.2 to the map $a: p(x') \to q(y')$, and hence we can assume $\mathcal{J} \simeq \mathcal{J}'$ and the map is given by a natural transformation $pf \rightarrow qg$. Notice that the latter form can be seen as a diagram $\mathcal{J} \rightarrow M(K' \rightarrow$ $K \leftarrow K''$, and essential surjectivity [follow](#page-17-0)s. \Box

We have the following generalization of HTT proposition 5.3.5.15.

Lemma 3.0.4. *For simplicial set K, the following properties are equivalent:*

- *1. It is categorically equivalent to a minimal ∞-category, which has only finitely many non-degenerate simplexes.*
- *2. It is categorically equivalent to a finite minimal* 1*-category that the length of composable non-identity morphisms has finite upper bound.*

Proof. (2) \Rightarrow (1) Using the description of the non-degenerate simplexes in nerve of 1-category.

(1) *⇒* (2) Assume that *K ≃* C and C is a minimal *∞*-category, we only need to show that C is actually an 1-category, and then we can use the description of the non-degenerate simplexes in nerve of 1-category again to conclude the proof.

Notice that, if C satisfies (1) then for any objects $x, y \in C$, $\text{map}_{C}(x, y)$ also satisfies (1). To prove this claim, we use the model $\text{map}_{\mathcal{C}}^{\mathbf{R}}(x, y)$ (cf. discussion before HTT proposition 1.2.2.3.). A simplex $\Delta^n \to \text{map}^{\mathbf{R}}_{\mathcal{C}}(x, y)$ is a simplex $\Delta^{n+1} \to \mathcal{C}$ satisfying some properties and we can see that if the latter is degenerate, the former is also degenerate (except when $n = 0$ and $x = y$, there is another possibility that the 0-simplex represents id_x). This is enough to show our claim.

If C is a Kan complex, it has to be a finite set. To show this, given any object $x \in \mathcal{C}$, if $\pi_1(X, x)$ is nontrivial, we can take some $\gamma : \Delta^1 \to \mathcal{C}$ to represent a non-trivial loop. We have a categorical equivalence:

$$
\text{Spine}_{n} \simeq \Delta^{\{0,1\}} \coprod_{\Delta^{\{1\}}} \Delta^{\{1,2\}} \coprod_{\Delta^{\{2\}}} \cdots \coprod_{\Delta^{n-1}\} \Delta^{\{n-1,n\}} \to \Delta^{n}
$$

Take the map Spine_n \rightarrow C which maps each $\Delta^{\{i,i+1\}}$ to γ , and then exdend it to Δ^n . The resulting *n*-simplex cannot be degenerate and hence it contradicts our assumption. We apply this observation to Ω^n C and we find out that all higher homotopy groups of C are trivial. Finally, for the original C , the previous discussion applied to $\text{map}_{\mathcal{C}}(x, y)$ show it is a finite set. \Box

Definition 3.0.5. *A simplicial set K is called very small if it satisfies the above two (equivalent) properties.*

Theorem 3.0.6. *Given an* ∞ *-category* $\mathcal D$ *and very small simplicial set* K *, the comparison functor is equivalence:*

$$
ind \cdot (\mathcal{D}^K) \to (ind \cdot \mathcal{D})^K
$$

Proof. We can assume that *K* is the nerve $N(\mathcal{C})$ of some minimal 1-category. By definition we can find a maximal object of C , namely an object X such that admits no morphism towards other object. Let \mathcal{C}^0 be the full subcategory consists of objects other than *X*, and $\mathcal{C}_{/X}^0$ the over-category $\mathcal{C}^0 \times_{\mathcal{C}} \mathcal{C}_{/X}$. We have a natural simplicial homotopy:

We have a natural equivalence induced by this simplicial homotopy:

 $\text{Fun}(\mathcal{C}, \mathcal{D}) \simeq \text{M}(\text{Fun}(\mathcal{C}^0, \mathcal{D}) \to \text{Fun}(\mathcal{C}^0_{/X}, \mathcal{D}) \leftarrow \text{Fun}(\Delta^0, \mathcal{D}))$

Let us denote the right-hand-side as *M*. The reason for our claim is, we have pushout of simplicial set:

$$
N(\mathcal{C}_{/X}^0) \longrightarrow N(\mathcal{C}^0)
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
N(\mathcal{C}_{/X}^0)^{\triangleright} \longrightarrow N(\mathcal{C})
$$

This is also a homotopy pushout in Joyal model structure. Therefore we have equivalence:

$$
\operatorname{Fun}(\mathcal{C}, \mathcal{D}) \simeq \operatorname{Fun}(\mathcal{C}^0, \mathcal{D}) \times_{\operatorname{Fun}(\mathcal{C}^0_{/X}, \mathcal{D})} \operatorname{Fun}(\mathcal{C}^{0, \triangleright}_{/X}, \mathcal{D})
$$

The comma object in question can also be represented as:

$$
M \simeq \operatorname{Fun}(\mathcal{C}^0, \mathcal{D}) \times_{\operatorname{Fun}(\mathcal{C}^0_{/X}, \mathcal{D})} \operatorname{Fun}(\mathcal{C}^0_{/X} \diamond \Delta^0, \mathcal{D})
$$

By HTT proposition 4.2.1.2., we justify our claim.

Now we can do induction on the cardinality of the isomorphic-classes of objects in C. We have the following diagram:

$$
\text{ind-Fun}(\mathcal{C}^0, \mathcal{D}) \longrightarrow \text{ind-Fun}(\mathcal{C}^0_{/X}, \mathcal{D}) \longleftarrow \text{ind-} \mathcal{D}
$$
\n
$$
\downarrow \qquad \qquad f \downarrow \qquad \qquad \downarrow
$$
\n
$$
\text{Fun}(\mathcal{C}^0, \text{ind-} \mathcal{D}) \longrightarrow \text{Fun}(\mathcal{C}^0_{/X}, \text{ind-} \mathcal{D}) \longleftarrow \text{ind-} \mathcal{D}
$$

By our previous discussion, the inductive assumption, lemma 1.1.9 and theorem 3.0.3 , we only need to show the middle vertical functor *f* is fullyfaithful. Using HTT proposition 5.3.5.11., it is enough to show the essential image of the following inclusion consists of compact objects:

$$
\operatorname{Fun}(\mathcal{C}^0_{/X}, \mathcal{D}) \to \operatorname{Fun}(\mathcal{C}^0_{/X}, \operatorname{ind} \text{-} \mathcal{D})
$$

The point is, $N(\mathcal{C}_{/X}^0)$ is a finite simplicial set, and hence the mapping space between two functors in $\text{Fun}(\mathcal{C}^0_{/X}, \text{ind-} \mathcal{D})$ is a canonical finite limit of mapping spaces between the values of each functor. Using the fact that filtered colimits commute with finite limits, we conclude our proof. \Box